French, asked by Jaan0001, 3 months ago

Find the Value of x \sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

Answers

Answered by Fαírү
145

\large\bold{\underline{\underline{Given:-}}}

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

\large\bold{\underline{\underline{To \: Find:-}}}

The value of x

\large\bold{\underline{\underline{Solution:-}}}

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

Rewriting 5⁰ = 1:

\sqrt{ \bigg(1 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

\sqrt{  \dfrac{5}{3}  }= (0.6)^2 - 3x

Rationalise the LHS by multiplying √3/√3:

\dfrac{\sqrt{15} }{3} = (0.6)^2 - 3x

Rewriting (0.6)² as a fraction:

\dfrac{\sqrt{15} }{3} = \bigg( \dfrac{6}{10} \bigg)^2 - 3x

\dfrac{\sqrt{15} }{3}  =  \dfrac{9}{25} - 3x

Multiply both sides by 3:

\sqrt{15}  = \dfrac{27}{25}  - 9x

Find x:

9x = \dfrac{27}{25} - \sqrt{15}

9x = \dfrac{27 - 25\sqrt{15}  }{25}

Dividing both sides by 9:

x = \dfrac{27 - 25\sqrt{15}  }{225}

Answered by Anonymous
40

\large\bold{\underline{\underline{Given:-}}}

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

\large\bold{\underline{\underline{To \: Find:-}}}

The value of x

\large\bold{\underline{\underline{Solution:-}}}

\sqrt{ \bigg(5^0 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

Rewriting 5⁰ = 1:

\sqrt{ \bigg(1 + \dfrac{2}{3} \bigg) } = (0.6)^2 - 3x

\sqrt{  \dfrac{5}{3}  }= (0.6)^2 - 3x

Rationalise the LHS by multiplying √3/√3:

\dfrac{\sqrt{15} }{3} = (0.6)^2 - 3x

Rewriting (0.6)² as a fraction:

\dfrac{\sqrt{15} }{3} = \bigg( \dfrac{6}{10} \bigg)^2 - 3x

\dfrac{\sqrt{15} }{3}  =  \dfrac{9}{25} - 3x

Multiply both sides by 3:

\sqrt{15}  = \dfrac{27}{25}  - 9x

Find x:

9x = \dfrac{27}{25} - \sqrt{15}

9x = \dfrac{27 - 25\sqrt{15}  }{25}

Dividing both sides by 9:

x = \dfrac{27 - 25\sqrt{15}  }{225}

Similar questions