Math, asked by HomeWorkSearcher, 7 months ago

find the value of x:
x + (-2x) + (-5x) +.... + (-71x) = 1750​

Answers

Answered by mysticd
1

 Given \: x + (-2x) + (-5x) +\ldots + (-71x) = 1750

 Here, First \:term ( a = a_{1}) = x

 a_{2} - a_{1} = -2x - x = -3x \: --(1)

 and \: a_{3} - a_{2} = -5x -(-2x) = -3x \: --(2)

 a_{2} - a_{1} = a_{3} - a_{2} = -3x

 \therefore Given \: sequence \: is \: in \: A.P

 Common \: difference (d) = -3x

 n^{th} \:term = -71x

 \implies a + (n-1)d = -71x

 \implies x + (n-1)(-3x) = -71x

 \implies  (n-1)(-3x) = -71x - x

 \implies  (n-1)(-3x) = -72x

 \implies n-1 = \frac{-72x}{-3x}

 \implies n-1 = 24

 \implies n = 24 + 1

 \implies n = 25

/* We know that */

 \boxed{ \pink{ Sum \: of \:n \: terms (S_{n}) = \frac{n}{2} ( a + a_{n}) }}

 Here , a = x , a_{n} = -71x , n = 25

 S_{25} = 1750 \:( given )

 \implies \frac{25}{2} [ x - 71x ]  = 1750

 \implies \frac{25}{2} [  - 70x ]  = 1750

 \implies 25 \times ( -35 x ) = 1750

 \implies x = \frac{1750}{ 25 \times (-35)}

 \implies x = -2

Therefore.,

 \red{ Value \: of \: x } \green { = -2 }

•••♪

Similar questions