Find the value of x+|x| , if x=7,10,0,-3,-8. If x<0
Answers
Answered by
1
Answer:
14, 20, 0, 0, 0
Step-by-step explanation:
The notation |x|∣x∣ indicates the absolute value of x, therefore it can be rewritten as:
|x|=x∣x∣=x if x \geq≥ 0
|x|=-x∣x∣=−x if x < 0
In this problem, we have the expression
x+|x|x+∣x∣
Therefore, we can rewrite it as:
if x ≥ 0:
x+|x|=x+x=2xx+∣x∣=x+x=2x (a)
If x < 0:
x+|x|=x+(-x)=0x+∣x∣=x+(−x)=0 (b)
So now we can substitute the given values into the two expressions:
x = 7 (positive value, so we use expression (a):
2x=2\cdot 7 = 142x=2⋅7=14
x = 10 (positive values, so we use expression (a):
2x=2\cdot 10=202x=2⋅10=20
x = 0 (zero, so we can use expression (a):
2x=2\cdot 0=02x=2⋅0=0
x = -3 (negative value, so we use expression (b):
x+|x|=0x+∣x∣=0
x = -8 (negative value, so we use expression (b):
x+|x|=0x+∣x∣=0
Similar questions