Find the value of (x-y)³+(y-z)³+(z-x)³
Answers
Answered by
6
Main concept:A^3 +B^3+ C^3=3ABC
if A+B+C=O
Given A=(X-Y)
B=(Y-Z)
C=(Z-X)
Their sum is A +B+C=O
so, their value is 3ABC
=3×(X-Y)(Y-Z)(Z-X)
Solve it from here.
Answered by
0
The value of (x-y)³+(y-z)³+(z-x)³ = 3x²(z-y) + 3y²(x-z) + 3z²(y-x)
Given:
(x-y)³+(y-z)³+(z-x)³
To find:
Find the value of (x-y)³+(y-z)³+(z-x)³
Solution:
From algebraic identities
(a -b)³ = a³- 3a²b + 3ab²- b³
From the above formula
(x - y)³ = x³- 3x²y + 3xy²- y³
(y - z)³ = y³- 3y²z + 3yz²- z³
(z - x)³ = z³- 3z²x + 3zx²- x³
⇒ (x-y)³+(y-z)³+(z-x)³
= x³- 3x²y + 3xy²- y³ + y³- 3y²z + 3yz²- z³ + z³- 3z²x + 3zx²- x³
= -3x²y + 3xy² - 3y²z + 3yz² - 3z²x + 3zx²
= 3x²(z-y) + 3y²(x-z) + 3z²(y-x)
The value of (x-y)³+(y-z)³+(z-x)³ = 3x²(z-y) + 3y²(x-z) + 3z²(y-x)
#SPJ2
Similar questions