Find the value of (x + y) from the given set of equations:
11/x + 19/y = 79
19/x + 11/y = 71
Answers
Step-by-step explanation:
Given:-
11/x + 19/y = 79
19/x + 11/y = 71
To find:-
Find the value of (x + y) from the given set of equations:
11/x + 19/y = 79
19/x + 11/y = 71
Solution:-
Given pair of given equations are :-
11/x + 19/y = 79 ----------(1)
=>11(1/x)+19(1/y)=79
Put , 1/x=a and 1/y=b then
11a+19b=79------------(2)
19/x + 11/y = 71
=>19(1/x)+11(1/y)=71
19a+11b=71-------------(3)
on adding (2)&(3) then
11a+19b=79
19a+11b=71
(+)
____________
30a+30b=150
____________
=>30(a+b)=150
=>a+b=150/30
a+b=5--------------(4)
On subtracting (1) from (2) then
19a+11b=71
11a+19b=79
(-)
___________
8a-8b=-8
_________
=>8(a-b)=-8
=>a-b=-8/8
a-b= -1 -------------(5)
now ,on adding (4) and (5)
a+b=5
a-b= -1
(+)
______
2a+0=4
______
=>2a=4
=>a=4/2
a=2 ---------(6)
On Substituting the value of a in (4) then
=>2+b=5
=>b=5-2
b=3
The value of a=2
=>1/x=2
x=1/2
The value of b=3
=>1/y=3
y=1/3
Now ,the value of x+y
=>(1/2)+(1/3)
LCM of 2 and 3=6
=>(3+2)/6
=>5/6
Hence, x+y=5/6
Answer:-
The value of (x+y) for the given problem is 5/6