Math, asked by atiqabrar, 2 months ago

Find the value of (x-y), if
3x+4y=11;4x+3y=10​

Answers

Answered by DeeznutzUwU
1

Answer:

-1

Step-by-step explanation:

The given equations are: 3x  + 4y = 11      --(1)

                                          4x + 3y = 10      --(2)

We have to find (x-y)

First, lets solve (1) and (2)

⇒ in (1)

   3x + 4y = 11

3x = 11-4y

x = \frac{11-4y}{3}

   Substituting the value of x in (2)

4(\frac{11-4y}{3}) + 3y = 10

\frac{44-16y}{3} + 3y = 10

\frac{44 -16y + 9y}{3}=10

\frac{44-7y}{3} = 10

44-7y = 30

-7y = 30-44

-7y = -14

y = 2

   Substituting the value of y in (1)

3x + 4(2) = 11

3x+8 = 11

3x = 11-8

3x = 3

x = 1

⇒ Solution of (1) and (2) is x = 1 and y = 2

x-y = 1-2 = -1

Answered by BrainlyTwinklingstar
3

Answer

\sf \dashrightarrow 3x + 4y = 11 \: \: --- (i)

\sf \dashrightarrow 4x + 3y = 10 \: \: --- (ii)

First, we should find the values of x and y.

By first equation,

\sf \dashrightarrow 3x + 4y = 11

\sf \dashrightarrow 3x = 11 - 4y

\sf \dashrightarrow x = \dfrac{11 - 4y}{3}

Now, we can find the value of y by second equation.

\sf \dashrightarrow 4x + 3y = 10

\sf \dashrightarrow 4 \bigg( \dfrac{11 - 4y}{3} \bigg) + 3y = 10

\sf \dashrightarrow \dfrac{44 - 16y}{3} + 3y = 10

\sf \dashrightarrow \dfrac{44 - 16y + 9y}{3} = 10

\sf \dashrightarrow \dfrac{44 - 7y}{3} = 10

\sf \dashrightarrow 44 - 7y = 10 \times 3

\sf \dashrightarrow 44 - 7y = 30

\sf \dashrightarrow -7y = 30 - 44

\sf \dashrightarrow -7y = -14

\sf \dashrightarrow y = \dfrac{-14}{-7}

\sf \dashrightarrow y = 2

Now, we can find the value of x by first equation.

\sf \dashrightarrow 3x + 4y = 11

\sf \dashrightarrow 3x + 4(2) = 11

\sf \dashrightarrow 3x + 8 = 11

\sf \dashrightarrow 3x = 11 - 8

\sf \dashrightarrow 3x = 3

\sf \dashrightarrow x = \dfrac{3}{3}

\sf \dashrightarrow x = 1

Now, we can find the answer of this question.

\sf \dashrightarrow x - y

\sf \dashrightarrow 1 - 2

\sf \dashrightarrow -1

Hence, the value of (x - y) is -1.

Similar questions