Math, asked by shrutim2901, 1 year ago

Find the value of x+y+z if 1,x,y,z,16 are in G.P.

Answers

Answered by MaheswariS
14

Answer:

\mathsf{x+y+z=14}

Step-by-step explanation:

\textsf{Concept:}

\textsf{The n th term of the G.P $a,\; ar,\;ar^2$.......is}

\boxed{\mathsf{t_n=a\,r^{n-1}}}

\textsf{Let a be the first tem and r the common ratio of the G.P}

\textsf{Given:}

\mathsf{a=1\;\;\&\;\;t_5=16}

\implies\mathsf{ar^4=16}

\implies\mathsf{(1)r^4=16}

\implies\mathsf{r^4=2^4}

\implies\mathsf{r=2}

\textsf{Then}

\mathsf{x=t_2=ar=1(2)=2}

\mathsf{y=t_3=ar^2=1(2)^2=4}

\mathsf{z=t_3=ar^3=1(2)^3=8}

\mathsf{x+y+z=2+4+8=14}

\implies\boxed{\mathsf{x+y+z=14}}

Similar questions