Math, asked by Sania02, 9 months ago

Find the value of x°​

Attachments:

Answers

Answered by Anonymous
9

Solution:

Given:

\angle ACB = 90°

\angle BAC = 40°

\angle AEF = 100°

Concept:

  • Here the ∆ ABC is a right - angled triangle , so by the given two angles we can find the third angle.
  • From the figure it is concluded that the figure EBD is a triangle .so by the two angles we can find the value of x .

We Know:

Sum of angles of a triangle is 180°.

Answer:[For ∆ABC]

\angle ACB = 90°

\angle BAC = 40°

  • Let the third angle be y.

[sum of triangle = 180°]

so , \angle ACB + \angle BAC + \angle ABC = 180°

90°  + 40° + y = 180°

130° + y = 180°

 y = 180° - 130°

 y = 50°

Answer:[For ∆ EBD]

\angle AEF = 100°

\angle EBD = 50°

  • Given the third angle is x.

[sum of triangle = 180°]

so , \angle AEF + \angle EBD + \angle EDB = 180°

100°  + 50° + x = 180°

150° + x = 180°

 x = 180° - 150°

 x = 30°

Hence ,the value of x is 30°.

Similar questions