Math, asked by fatimarm357, 22 days ago

Find the value of x²+y² when x+y =9 and xy= 18​

Answers

Answered by Anonymous
4

Answer:

↪ x² + y² = 45

Step-by-step explanation:

Given :-

x + y = 9

xy = 18

To Find :-

x² + y²

Solution :-

xy = 18

x + y = 9

↪(x+ y)² = 9² [ Squaring both sides ]

↪x² + 2xy + y² = 81

↪x² + y² = 81 - 2xy

↪x² + y² = 81 - 2 × 18

↪ x² + y² = 81 -36

↪ x² + y² = 45

Therefore,

↪ x² + y² = 45

Answered by Anonymous
18

Answer :-

  • x² + y² = 45

Given :-

  • The value of x² + y².

Solution :-

  • Here the sum of x and y & product of x and y is given. We are asked to find the value of x² + y².

----------------------------------------

⠀⠀⠀⠀⠀⠀

We know that,

  • (a + b)² = a² + 2ab + b²

⠀⠀⠀⠀⠀⠀

Where,

  • a = x
  • b = y

⠀⠀⠀⠀⠀⠀

Substituting the given values in this formula,

⠀⠀⠀⠀⠀⠀

 \bf \hookrightarrow    {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} \\

⠀⠀⠀⠀⠀⠀

 \bf \hookrightarrow    {(9)}^{2}  =  {x}^{2}  + 2(18) +  {y}^{2} \\

⠀⠀⠀⠀⠀⠀

 \bf \hookrightarrow    81  =  {x}^{2}   + 36 +  {y}^{2} \\

⠀⠀⠀⠀⠀⠀

\bf \hookrightarrow   {x}^{2}  +  {y}^{2} =81 - 36 \\

⠀⠀⠀⠀⠀⠀

\bf \hookrightarrow   \underline{\boxed{ \bf {x}^{2}  +  {y}^{2}  = 45}}\\

⠀⠀⠀⠀⠀⠀

Hence,

  • The value of x² + y² is 45.

----------------------------------------

⠀⠀⠀⠀⠀⠀

\boxed{\begin{array}{cc}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{array}}

Similar questions