Find the value of x3 + y3 + z3 – 3xyz if x2 + y2 + z2 = 83 and x + y + z = 15
Answers
Answer:
(a+b+c) = 15
squaring on both side
(a+b+c)² = (15)²
a²+b²+c²+2ab+2bc+2ac = 225
83 + 2(ab+bc+ac) = 225
2(ab+bc+ac) = 225 - 83
2(ab+bc+ac) = 142
ab+bc+ac = 71 ----------- 1
now ,
a³+b³+c³ = 3abc
(a+b+c) (a²+b²+ç²-ab-bc-ac)
15(83- (ab+bc+ac)
15(83 - 71)
15 × 12
180
Answer:
Consider the equation x + y + z = 15
From algebraic identities, we know that (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
So,
(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + xz)
From the question, x2 + y2 + z2 = 83 and x + y + z = 15
So,
152 = 83 + 2(xy + yz + xz)
=> 225 – 83 = 2(xy + yz + xz)
Or, xy + yz + xz = 142/2 = 71
Using algebraic identity a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca),
x3 + y3 + z3 – 3xyz = (x + y + z)(x² + y² + z² – (xy + yz + xz))
Now,
x + y + z = 15, x² + y² + z² = 83 and xy + yz + xz = 71
So, x3 + y3 + z3 – 3xyz = 15(83 – 71)
x3 + y3 + z3 – 3xyz = 15 × 12
Or, x3 + y3 + z3 – 3xyz = 180