Math, asked by siddhantban6648, 9 months ago

Find the value of y = √10− √5 / √2 to three places of decimals using the values √2 = 1.414 and √10 = 3.162 (approx.)

Answers

Answered by mysticd
6

 y = \frac{\sqrt{10} - \sqrt{5}}{\sqrt{2}}

 = \frac{\sqrt{2}(\sqrt{10} - \sqrt{5})}{\sqrt{2}\times \sqrt{2}}

 = \frac{ \sqrt{2} \times \sqrt{10} - \sqrt{2}\times \sqrt{5}}{2}

 = \frac{\sqrt{10}( \sqrt{2} - 1)}{2}

 =\frac{ 3.162( 1.414- 1 )}{2}

 = \frac{ 3.162 \times 0.414}{2}

 = 3.162 \times 0.207

 = 0.654534

Therefore.,

 \red{ Value \:of \: y } \green { = 0 654534}

•••♪

Answered by Anonymous
165

Given :-

 \sf y =   \frac{\sqrt{10}  -  \sqrt{5} }{ \sqrt{2} }

To Find :-

  • Value of 'y'

Solution :-

\sf y =   \frac{\sqrt{10}  -  \sqrt{5} }{ \sqrt{2} }

\implies\sf\frac{\sqrt{2}(\sqrt{10} - \sqrt{5})}{\sqrt{2}\times \sqrt{2}}</p><p>

\implies\sf\frac{ \sqrt{2} \times \sqrt{10} - \sqrt{2}\times \sqrt{5}}{2}

\implies\sf\frac{\sqrt{10}( \sqrt{2} - 1)}{2}

\implies\sf\frac{ 3.162( 1.414- 1 )}{2}

\implies\sf\frac{ 3.162 \times 0.414}{2}

\implies\sf3.162 \times 0.207

\implies\sf0.654534

Answer :-

  • Value of 'y' is 0.654534
Similar questions