Math, asked by babitachaudhary174, 9 months ago

Find the value of y for which the distance between
the points P(2, 3) and O(10, y) is 10 units.​

Answers

Answered by amitkumar44481
15

AnsWer :

y = 9 and y = - 3

GiveN :

  • The distance of point P and O is 10 units.

To FinD :

The value of y.

SolutioN :

We have,

  • Point P ( 2 , 3 )
  • Point O ( 10 , y )

✎ We know, Distance Formula.

 \tt \dagger  \:  \:  \:  \:  \: D =  \sqrt{ {\Big(x_2 - x_1 \Big)}^{2}+{ \Big(y_2-y_1\Big) }^{2} }

 \tt  : \implies10 =  \sqrt{ {\Big(10 - 2 \Big)}^{2}+{ \Big(y-3\Big) }^{2} }

 \tt  : \implies10 =  \sqrt{ {\Big(8 \Big)}^{2}+{ \Big(y-3\Big) }^{2} }

 \tt  : \implies10 =  \sqrt{ 64+ {y}^{2} + 9 - 6y  }

 \tt  : \implies10 =  \sqrt{{y}^{2}- 6y +   73}

 \tt  : \implies10 0=  {y}^{2}- 6y +   73

 \tt  : \implies0= {y}^{2}- 6y  -    27

\rule{200}2

☛ Let's Prime factor of ( 27 )

  • Such that their product is - 27.
  • And add / substrate is - 6.

\begin{array}{r | l} 3 & 27 \\ \cline{2-2} 3 & 9 \\ \cline{2-2} 3 & 3 \\ \cline{2-2}  & 1 \end{array}

 \tt  : \implies0= {y}^{2}- 9y  + 3y -    27

 \tt  : \implies0= y(y - 9) + 3(y  -  9)

 \tt  : \implies0= (y + 3)(y  -  9)

\rule{90}1

» Either,

 \tt  : \implies y - 9 = 0.

 \tt  : \implies y = 9.

\rule{90}1

» Or,

 \tt  : \implies y + 3 = 0.

 \tt  : \implies y =  - 3.

Therefore, the value of y is - 3 and 9.

Similar questions