Math, asked by sumitpathak989, 10 months ago

find the value of y if the distance between the points (2,y)and(-4,3)is 10​

Answers

Answered by sadhanagmarathedx
5

Answer:

Distance d between 2 points (x1,y1) and (x2,y2) is given by the formula:

d^2 = (x2 - x1)^2 + (y2 - y1)^2

Placing the values, we get -

10^2 = (-4–2)^2 + (3-y)^2

or, 100 = 36 + (3-y)^2

or, (3-y)^2 = 100 - 36 = 64

or, (3-y) = +8 or -8

Hence, y = 11 or -5

Answered by BrainlyKingdom
6

  • The distance formula is an algebraic expression used to determine the distance between two points with the coordinates (x₁, y₁) and (x₂, y₂).

Distance Between Two Points is Given by : \sf{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}

  • Plug In the values

\Rightarrow \textsf{10 units} = \sf{\sqrt{\left(-4-2\right)^{2}+\left(3-y\right)^{2}}}

\Rightarrow \textsf{10 units} = \sf{\sqrt{\left(-6\right)^{2}+\left(3-y\right)^{2}}}

\Rightarrow \textsf{10 units} = \sf{\sqrt{36+\left(3-y\right)^{2}}}

  • Squaring On Both Sides

\Rightarrow \textsf{100 units} = \sf{36+\left(3-y\right)^{2}}

  • Subtracting 36 from Both Sides

\Rightarrow \textsf{100 - 36 units} = \sf{\left(3-y\right)^{2}}

\Rightarrow \textsf{64 units} = \sf{\left(3-y\right)^{2}}

  • Taking Square Root on Both Sides

\Rightarrow \sf{\pm}\textsf{8 units} = \sf{3-y^{}}

  • Then, The Possible Solution is

⇒ + 8 = 3 - y

⇒ + 8 - 3 = - y

⇒ + 5 = - y

⇒ - 5 = y

  • And Other Possible Solution is

⇒ - 8 = 3 - y

⇒ - 8 - 3 = - y

⇒ - 11 = - y

⇒ 11 =  y

Similar questions