Math, asked by bharatpatil917, 9 months ago

Find the value... please​

Attachments:

Answers

Answered by sujaan77
0

Answer:

 \frac{ \sqrt{5} + 7 \sqrt{2}  }{3}  - 2 \sqrt{3}

Step-by-step explanation:

Rationalising the first term

 \frac{2}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  \\  \\  \frac{2( \sqrt{5}  +  \sqrt{3}) }{5 - 3}  =  \frac{2( \sqrt{5}  +  \sqrt{3} )}{2}  \:  \: (cancle \: 2) \\

Rationalising the second term

 \frac{ - 3}{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{ 3 -  \sqrt{2} } }  \\  \\  \frac{ - 3( \sqrt{3}  -  \sqrt{2} )}{3 - 2}  =  - 3( \sqrt{3}  -  \sqrt{2} ) \\

Rationalising the third term

 \frac{ - 2}{ \sqrt{5} -  \sqrt{2}  }  \times  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5}  +  \sqrt{2} }  \\  \\  \frac{ - 2( \sqrt{5 }  +  \sqrt{2}) }{5 - 2}  =  \frac{ - 2( \sqrt{5}  +  \sqrt{2} )}{3}

Now,

 \sqrt{5}  +  \sqrt{3}  - 3( \sqrt{3}  -  \sqrt{2} ) -  \frac{2( \sqrt{5}  +  \sqrt{2} )}{3}  \\  \\  \sqrt{5 }  +  \sqrt{3}  - 3 \sqrt{3}  + 3 \sqrt{2}  -  \frac{2 \sqrt{5} + 2 \sqrt{2}  }{3}  \\ \\ 5 - 2 \sqrt{3}  + 3 \sqrt{2}  -  \frac{ - 2 \sqrt{5}  + 2 \sqrt{2} }{3}  \\ \\   \frac{3 \sqrt{5}  + 9 \sqrt{2} - (2 \sqrt{5}   + 2 \sqrt{2}) }{3}  - 2 \sqrt{3}  \\   \\ \frac{3 \sqrt{5}  + 9 \sqrt{2} - 2 \sqrt{5}   - 2 \sqrt{2} }{3}  - 2 \sqrt{3}  \\  \\  \frac{ \sqrt{5 }  + 7 \sqrt{2} }{3}  - 2 \sqrt{3}

Attachments:
Similar questions
Math, 4 months ago