Math, asked by NilotpalSwargiary, 10 months ago

Find the value:
 \frac{cos(90 + a)sec( - a)tan(180 - a)}{sec(360 - a)sin(180 - a)cot(90 - a)}

Answers

Answered by InfiniteSoul
4

\sf{\underline{\boxed{\blue{\large{\bold{ Question}}}}}}

  • \sf\dfrac{cos(90 + a)sec( - a)tan(180 - a)}{sec(360 - a)sin(180 - a)cot(90 - a)}

\sf{\underline{\boxed{\blue{\large{\bold{ Identities \:used }}}}}}

\sf{\bold{\green{\underline{\underline{\dag Cos( 90 + \theta ) = - sin \theta }}}}}

\sf{\bold{\green{\underline{\underline{\dag  Sec( -\theta) = sec \theta}}}}}

\sf{\bold{\green{\underline{\underline{\dag tan( 180 - \theta ) = - cot \theta}}}}}

\sf{\bold{\green{\underline{\underline{\dag sec( 360 - \theta ) = sec \theta}}}}}

\sf{\bold{\green{\underline{\underline{\dag sin( 180 - \theta ) = cos \theta}}}}}

\sf{\bold{\green{\underline{\underline{\dag cot( 90 - \theta ) = tan \theta}}}}}

\sf{\bold{\green{\underline{\underline{\dag \dfrac{sin\theta}{cos\theta} = tan\theta}}}}}

\sf{\underline{\boxed{\blue {\large{\bold{ Solution}}}}}}

\sf\implies \dfrac{cos(90 + a)sec( - a)tan(180 - a)}{sec(360 - a)sin(180 - a)cot(90 - a)}

\sf\implies \dfrac{- sin \:a\times sec \: a\times - cot \: a }{sec\: a\times cos\: a \times tan\: a }

\sf\implies \dfrac{- sin \:a\times \cancel{sec  a}\times - cot \: a }{\cancel{sec\: a}\times cos\: a \times tan\: a }

\sf\implies \dfrac{- sin \:a\times - cot \: a }{ cos\: a \times tan\: a }

\sf\implies \dfrac{- tan\: a \times - cot\: a}{tan\: a}

\sf\implies \dfrac{-\cancel{ tan\: a }\times - cot\: a}{\cancel{tan\: a}}

\sf\implies - ( - tan\:a)

\sf\implies tan\:a

\sf{\red{\boxed{\bold{\dag tan \: a}}}}

Similar questions