Math, asked by astar9, 1 year ago

find the value
 \sqrt{30 +  \sqrt{30 +  \sqrt{30... + } } }

Answers

Answered by TIRTH5828
1

 x =  \sqrt{30 + \sqrt{30 + \sqrt{30... + } } }  \\ squaring \: both \: side \\  {x}^{2}  = 30 +  \sqrt{30 + \sqrt{30 + \sqrt{30... + } } } \\   {x}^{2}  = 30 + x \\ as \:  \sqrt{30 + \sqrt{30 + \sqrt{30... + } } } \:  = x \\  {x}^{2}  - x - 30 = 0 \\  {x}^{2}  - 6x + 5x - 30 = 0 \\ x(x - 6) + 5(x - 6) = 0 \\ (x + 5)(x - 6) = 0 \\ x =  - 5 \:  \: or \: x = 6 \\  \sqrt{30 + \sqrt{30 + \sqrt{30... + } } }  \:  \:  \:  =  - 5 \:  \: or \: 6
Answered by Paradoxialchampion
1
Hey!

See the attached pic.

Hope it helps u.

Attachments:
Similar questions