Math, asked by shahzebkhan5454, 10 months ago

Find the value x such that : (See above)​

Attachments:

Answers

Answered by irfan1728
17

heyy dude,here is your answer

please mark as brainliest✌❤

Attachments:
Answered by DrNykterstein
7

 \huge{ \underline{ \sf Solution: }} \\  \\  \\  \sf \rightarrow  \quad  {3}^{2x - 1}  =  \frac{1}{ {27}^{x - 3} }  \\  \\ \sf \rightarrow  \quad  {3}^{2x - 1}  =  {27}^{ - (x - 3)}   \qquad  \bigg( \because \sf \:  \frac{1}{a}  =  {a}^{ - 1} \:  \bigg) \\  \\  \sf \rightarrow  \quad  {3}^{2x - 1}  =  {3}^{3(3 - x)}  \\  \\ \sf \rightarrow  \quad  {3}^{2x - 1}  =  {3}^{9 - 3x}  \\  \\  \sf \quad Here,  \:  The \:  bases \:  are \:  same \:  hence \\ \sf \: the \:  exponents \:  must  \: also  \: be  \: same.  \\  \\\sf \rightarrow  \quad 2x - 1 = 9 - 3x \\  \\  \sf \rightarrow  \quad 2x + 3x = 9 + 1 \\  \\ \sf \rightarrow  \quad 5x = 10 \\  \\ \sf \rightarrow  \quad x =  \frac{ \cancel{10}^{2} }{ \cancel{5}_{1} }  \\  \\ \sf \rightarrow  \quad  \boxed{ \sf \blue{x = 2}}

Similar questions