Math, asked by stephenhansda2029, 1 year ago

Find the values if a and b so that x^4 +x^3 +8x^2 +ax -b is divisible by x^2 +1

Answers

Answered by shadowsabers03
0

                 

p(x) = x^4 +x^3 +8x^2 +ax -b = 0

$$If$\ p(x)\ $is divisible by$\ x^2+1,\ $then$\ p(\iota)=0\ $and$\ p(-\iota)=0,\ $where$\ \iota=\sqrt{-1}\ .

p(\iota)=(\iota)^4+(\iota)^3+8(\iota)^2+a(\iota)-b=0 \\ \\ p(\iota)=1-\iota-8+a\iota-b=0\ \ \ \ \ \longrightarrow\ \ \ \ \ (1)

p(-\iota)=(-\iota)^4+(-\iota)^3+8(-\iota)^2+a(-\iota)-b=0 \\ \\ p(-\iota)=1+\iota-8-a\iota-b=0\ \ \ \ \ \longrightarrow\ \ \ \ \ (2)

(1) = (2) \\ \\ 1-\iota-8+a\iota-b=1+\iota-8-a\iota-b \\ \\ -\iota+a\iota=\iota-a\iota \\ \\ \iota(a-1)=\iota(1-a) \\ \\ a-1=1-a \\ \\ a+a=1+1 \\ \\ 2a=2 \\ \\ a=\bold{1}

$$From$\ (1), \\ \\ 1-\iota-8+a\iota-b=0 \\ \\ 1-\iota-8+\iota-b=0 \\ \\ -7-b=0 \\ \\ b=\bold{-7}

$$Hope this helps. Plz mark it as the brainliest. \\ \\ Plz ask me if you've any doubts. \\ \\ \\ Thank you. :-)

             

Similar questions