Math, asked by lala1217, 1 month ago

Find the values of a and b in each of the following:-

Help Me!...I literally gonna fail in Maths..

Give me a Brief explanation.. ​

Attachments:

Answers

Answered by gauravmali846
3

Solution:-

{ \blue{ \boxed{\tt{ \underbrace{\underline{Solution:- }}}}}} \\  \\ { 1. \:  \: \frac{3 +  \sqrt{2} }{3 -  \sqrt{2}  } =a + b \sqrt{2}   } \\  \\ { \longmapsto \tt{\frac{3 +  \sqrt{2} }{3 -  \sqrt{2}  } =a + \sqrt{2b} }} \\  \\ {{ \longmapsto \tt{\frac{3 +  \sqrt{2} }{3 -   \sqrt{2}    } -  \sqrt{2b}   \:  \: =a }}} \\  \\ { \pink{ \longmapsto \tt{a = {\frac{3 +  \sqrt{2} }{3 -  \sqrt{2}  } }}}} \\  \\  \\ {2. \:  \:  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } = a + b  \sqrt{5}  } \\  \\ { \tt{ \longmapsto \:  \:   \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } = a + \sqrt{5b} }} \\  \\ { \tt{ \longmapsto \:  \:   \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } -  \sqrt{5b}  = a  }}  \\  \\ { \red{ \tt{ \longmapsto \:  \:    a= \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5}  }}} } \\  \\  {\text{ \tt{now \: you \: to \: put \: value \: in \:   \purple{b.}}}}

Attachments:
Similar questions