Math, asked by Anonymous, 1 year ago

Find the values of k for which the equation x² + 5kx + 16 = 0 has no real roots .

class 10th mathematics.

Fast guys


sushanth77: 8/5
Punithaaswath: Hi
AdityaPrinceSAP: 8/5
Punithaaswath: Hi
chiragmishra25: 8/5
king124421: -8/5
turbomind: thank you

Answers

Answered by fanbruhh
69

 \huge \bf \red{ \mid{ \overline{ \underline{ANSWER}}} \mid}


 \bf \pink{step \: by \: step \: explanation}


The given equation is

→ x² + 5kx + 16 = 0


→ D = (5k)² - 4( 1 )( 16 ) = 25k² - 64


→ If the equation has no real roots , then D < 0.


 \bf{ \implies \:  {25k}^{2}  - 64 &lt; 0 }


 \bf{ \implies \:  {k}^{2}  &lt;  \frac{64}{25}}

 \bf{ \implies \: k &lt;  \frac{8}{5} } \\  \\  \bf{ \implies \:  k &gt;  \frac{ - 8}{5}}


Hence, for no real roots ,

 \bf{ \frac{ - 8}{5}  &lt; k &lt;  \frac{8}{5}}



 \huge \green{ \boxed{ \boxed{ \mathscr{THANKS}}}}

turbomind: na malayali
Punithaaswath: Amma na tamil da
Punithaaswath: Hey na oru ponnu da
sprao534: A small correction. if k^2 <64/25 implies |×|<8/5
Punithaaswath: Hey 9tha padikira turbomind
sprao534: if k^2 <64/25 implies |k|<8/5
turbomind: ok
Punithaaswath: Hi
Punithaaswath: Endha standard
Punithaaswath: Hello
Answered by HEMANTHKUMAR007
1
\underline{\mathfrak{\huge{Answer}}}

{x^2 + 5kx + 16 = 0}

From the above equation,

a = 1; b = 5k; c = 16

If the equation doesn't have equal roots,

{D = b^2 - 4ac &lt; 0}

Substituting the values,

{{5k}^2 - 4(16) &lt;0}

{25k^2 - 64 &lt; 0}

{25k^2 &lt; 64}

{k^2 &lt; }{\frac{64}{25}}}

{k &lt; }{\frac{8}{5}}

{k &gt; }{\frac{-8}{5}}

Therefore ,

{\huge{\frac{-8}{5}}} > {\huge{k}} > {\huge{\frac{8}{5}}}

Hence it is solved

Punithaaswath: Thanks bro
Similar questions