Math, asked by sindhudevikarajeev, 1 year ago


Find the values of k for which the pair of equations kx +2y =3, 3x+6y= 10 have no
solution

Answers

Answered by Anonymous
1

Answer:

for no solution the condition is

\large{a1/a2=b1/b2≠c1/c2}

given that

\large{</strong><strong>kx</strong><strong>+</strong><strong>2</strong><strong>y</strong><strong>=</strong><strong>3</strong><strong>}

\large{</strong><strong>3</strong><strong>x</strong><strong>+</strong><strong>6</strong><strong>y</strong><strong>=</strong><strong>1</strong><strong>0</strong><strong>}

we have

\large{</strong><strong>k</strong><strong>/</strong><strong>3</strong><strong>=</strong><strong>2</strong><strong>/</strong><strong>6</strong><strong>≠</strong><strong>3</strong><strong>/</strong><strong>1</strong><strong>0</strong><strong>}

\large{</strong><strong>k</strong><strong>/</strong><strong>3</strong><strong>=</strong><strong>2</strong><strong>/</strong><strong>6</strong><strong>}

\large{</strong><strong>6</strong><strong>=</strong><strong>6</strong><strong>k</strong><strong>}

\large{</strong><strong>k</strong><strong>=</strong><strong>1</strong><strong>}

Answered by BhaumikSolanki
1

Answer:

k=1

Step-by-step explanation:

kx+2y=3

3x+6y=10

They Have No Solution.

\frac{k}{3}=\frac{2}{6} \neq \frac{3}{10}

\frac{k}{3}=\frac{2}{6}

6k=6

k=1

Hope It Helps!!!!!!!!

PLEASE MARK IT AS BRAINLIEST.

Similar questions