Math, asked by nikhilkataria2005, 9 months ago

Find the values of k for which the system 2x+ky=12x+ky=1,3x-5y=73x-5y=7 will have a (i) unique solution and (ii) no solution .Is there is a value of k for which the system has infinitely many solutions

Answers

Answered by sanjeevk28012
2

Given :

The system of linear equation as

2 x + k y = 1

3 x - 5 y = 7

To Find :

The value of k for which system have

( i ) Unique solution

( ii ) No solution

( iii ) infinitely many solution

Solution :

Since for the system of equation

  a_1x + b_1y + c_1 = 0

  a_2x+b_2y+c_2 = 0

For Unique solution

 \dfrac{a_1}{a_2}  \neq  \dfrac{b_1}{b_2}\neq \dfrac{c_1}{c_2}

For No solution

 \dfrac{a_1}{a_2}  = \dfrac{b_1}{b_2}\neq \dfrac{c_1}{c_2}

For infinite solution

\dfrac{a_1}{a_2}  = \dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}

Now,

The system of linear equation as

2 x + k y = 1

3 x - 5 y = 7

i.e  a_1 = 2          b_1 = k            c_1 = -1

     a_2 = 3          b_2 = -5           c_2 = -7

( i ) Unique solution

 i.e  \dfrac{a_1}{a_2}  \neq  \dfrac{b_1}{b_2}\neq \dfrac{c_1}{c_2}

Or,   \dfrac{2}{3}  \neq  \dfrac{k}{-5}\neq \dfrac{-1}{-7}

∴     k \neq \dfrac{-10}{3}  and   k \neq \dfrac{-5}{7}

( ii ) No solution

   \dfrac{a_1}{a_2}  = \dfrac{b_1}{b_2}\neq \dfrac{c_1}{c_2}

Or,  \dfrac{2}{3}  = \dfrac{k}{-5}\neq \dfrac{-1}{-7}

∴     k = \dfrac{-10}{3}  and  k \neq \dfrac{-5}{7}

( iii ) Infinite many solution

 \dfrac{a_1}{a_2}  = \dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}

Or,  \dfrac{2}{3}  = \dfrac{k}{-5}= \dfrac{-1}{-7}

∴     k = \dfrac{-10}{3}  and  k = \dfrac{-5}{7}

Hence, The value of k

( i )  Unique solution

     k \neq \dfrac{-10}{3}  and   k \neq \dfrac{-5}{7}

( ii ) No solution

      k = \dfrac{-10}{3}  and  k \neq \dfrac{-5}{7}

( iii ) Infinite many solution

  k = \dfrac{-10}{3}  and  k = \dfrac{-5}{7}         Answer

Answered by bestwriters
0

No, there is no value of k for which the system has infinitely many solutions.

Step-by-step explanation:

2x + ky = 1 → (equation 1)

3x - 5y = 7 → (equation 2)

Now, the given system is:

2x + ky = 1 ⇒ a₁x + b₁y - c₁ = 0

Where,

a₁ = 2; b₁ = k; c₁ = -1

3x - 5y = 7 ⇒ a₂x + b₂y - c₂ = 0

Where,

a₂ = 3; b₂ = -5; c₂ = -7

(i) Unique solution:

a₁a₂ = b₁b₂ ⇒ 2 × 3 ≠ -k × -5

a₁/a₂ = b₁/b₂ ⇒ 2/3 ≠ -k/-5 ⇒ k ≠ 10/3

The given equation will have a unique solution.

(ii) No solution:

a₁a₂ = b₁b₂ ≠ c₁c₂ ⇒ 2 × 3 = k × -5 ≠ -1 × -7 ⇒ k = -10/3

a₁/a₂ = b₁/b₂ ≠ c₁/c₂ ⇒ 2/3 = k/-5 ≠ -1/-7 ⇒ k ≠ -5/7

The given equation will have no solution when k = -10/3.

Similar questions