Math, asked by Anonymous, 1 year ago

Find the values of

(a) \:   log_{25}(200)
(b) \:  log_{7}( \sqrt{2} )
(c) \:  log( \sqrt[3]{48} \times  {108}^{ \frac{1}{4}  }  \div  \sqrt[12]{6}  )


❌❌NO SPAMMING❌❌​

Answers

Answered by Swarup1998
14

Logarithmic Table :

\begin{array}{|c|c|}\cline{1-2}\mathrm{log_{e}2} & 0.693\\ \cline{1-2}\mathrm{log_{e}5} & 1.609\\ \cline{1-2}\mathrm{log_{e}7}&1.946\\ \cline{1-2}\mathrm{log_{10}2}&0.301\\ \cline{1-2}\mathrm{log_{10}3}&0.477\\ \cline{1-2}\end{array}

(a) Now, \mathrm{log_{25}200}

\mathrm{=\frac{log_{e}200}{log_{e}25}}

\mathrm{=\frac{log_{e}(5^{2}\times 2^{3})}{log_{e}(5^{2})}}

\mathrm{=\frac{log_{e}5^{2}+log_{e}2^{3}}{log_{e}5^{2}}}

\mathrm{=\frac{log_{e}5^{2}}{log_{e}5^{2}}+\frac{log_{e}2^{3}}{log_{e}5^{2}}}

\mathrm{=1+\frac{3log_{e}2}{2log_{e}5}}

\approx \mathrm{1+\frac{3\times 0.693}{2\times 1.609}}

\approx \mathrm{1.646}

\to \boxed{\mathrm{\frac{log_{e}200}{log_{e}25}\approx 1.646}}

(b) Now, \mathrm{log_{7}\sqrt{2}}

\mathrm{=log_{7}2^{\frac{1}{2}}}

\mathrm{=\frac{1}{2}log_{7}2}

\mathrm{=\frac{1}{2}\frac{log_{e}7}{log_{e}2}}

\approx \mathrm{\frac{1}{2}\frac{0.693}{1.946}}

\approx \mathrm{0.178}

\to \boxed{\mathrm{log_{7}\sqrt{2}\approx 0.178}}

(c) Now, \mathrm{log(\sqrt[3]{48}\times 108^{\frac{1}{4}}\div \sqrt[12]{6})}

\mathrm{=log\bigg(\frac{48^{\frac{1}{3}}\times 108^{\frac{1}{4}}}{6^{\frac{1}{12}}}\bigg)}

\mathrm{=log48^{\frac{1}{3}}+log108^{\frac{1}{4}}-log6^{\frac{1}{12}}}

\mathrm{=\frac{1}{3}log(2^{4}\times 3)+\frac{1}{4}log(2^{2}\times 3^{3})-\frac{1}{12}log(2\times 3)}

\mathrm{=\frac{4}{3}log2+\frac{1}{3}log3+\frac{1}{2}log2+\frac{3}{4}log3-\frac{1}{12}log2-\frac{1}{12}log3}

\mathrm{=\frac{7}{4}log_{10}2+log_{10}3}

\approx \mathrm{\frac{7}{4}(0.301)+0.477}

\approx \mathrm{1.00375}

\to \boxed{\mathrm{log(\sqrt[3]{48}\times 108^{\frac{1}{4}}\div \sqrt[12]{6})\approx 1.00375}}


RealWriter: Plzz tell how you make table.
Answered by ITZWildBoy
0

Answer:

\huge\underline\mathfrak\green{Solution}

Attachments:
Similar questions