Math, asked by maitrimuskan0230, 6 months ago

Find the values of the constant a and b for which
sin x x cos x (5 tan x + 2 cot x) = a + b sin? x.

Answers

Answered by ojaswa67
37

Answer:

a = 2 \\ b = 3

Step-by-step explanation:

 \sin(x)  \cos(x) (5 \tan(x)  + 2 \cot(x) ) = a + b

 \sin(x). \cos(x) (5 \frac{ \sin(x) }{ \cos(x)  }  + 2 \frac{ \cos(x) }{ \sin(x) } )

5 { \sin(x) }^{2}  + 2 { \cos(x) }^{2}

5 { \sin(x) }^{2}  + 2(1 -  { \sin(x) }^{2} ) \\ 5 { \sin(x) }^{2}  + 2 - 2 { \sin(x) }^{2}  \\ 3 { \sin(x) }^{2}  + 2 \\

Now, comparing it with the form

a + b ({ \sin(x) }^{2} )

ᴡᴇ ɢᴇᴛ,

a = 2 \\ b = 3

ʜᴏᴩᴇ ɪᴛ ʜᴇʟᴩꜱ yᴏᴜ!!

ᴩʟᴇᴀꜱᴇ ᴍᴀʀᴋ ɪᴛ ᴀꜱ ʙʀᴀɪɴʟɪᴇꜱᴛ:)

Similar questions