Find the values of x
Answers
Answer:
Hey! Mate Here is your solution. Thanks
Step-by-step explanation:
Given -
p(x) = x² - (1 + √2)x + √2 = 0
To Find -
Value of x
In x² - (1 + √2)x + √2 = 0
here,
a = 1
b = -(1 + √2) = (-1 - √2)
c = √2
Using Quadratic formula -
- x = -b ± √b² - 4ac/2a
» -[(-1 - √2)] ± √(-1 - √2)² - 4×1×√2/2(1)
» (1 + √2) ± √1 + 2 + 2√2 - 4√2/2
» (1 + √2) ± (√3 - 2√2)/2
Zeroes are -
- x = (1 + √2) + (√3 - 2√2)/2
and
- x = (1 + √2) - (√3 - 2√2)/2
Verification -
Let α = 1 + √2 + √3 - 2√2/2 and β = 1 + √2 - √3 - 2√2/2
Now,
- α + β = -b/a
(1 + √2) + (√3 - 2√2)/2 + (1 + √2) - (√3 - 2√2)/2 = -(-1 - √2)/1
» (1 + √2) + (√3 - 2√2) + (1 + √2) - (√3 - 2√2)/2 = 1 + √2
» 1 + √2 + 1 + √2/2 = 1 + √2
» 2 + 2√2/2 = 1 + √2
» 2(1 + √2)/2 = 1 + √2
» 1 + √2 = 1 + √2
LHS = RHS
And
- αβ = c/a
(1 + √2) + (√3 - 2√2)/2 × (1 + √2) - (√3 - 2√2)/2 = √2/1
» (1 + √2)² - (√3 - 2√2)²/4 = √2
» 1 + 2 + 2√2 - (3 - 2√2)/4 = √2
» 3 + 2√2 - 3 + 2√2/4 = √2
» 4√2/4 = √2
» √2 = √2
LHS = RHS
Hence,
Verified..