Math, asked by MissPerfect09, 4 months ago

❶ Find the values of x, y and z in each of the case given below ⟼
━━━━━━━━━━━━━━━━━
❷ Prove that –
If Cos∅ + Sin∅ √2Cos∅, Show that Cos∅ - Sin∅ = √2 Sin∅
━━━━━━━━━━━━━━━━━
– Kindly Don't Spamm⚠️
– No Copied answers⚠️
– Answer with full solution
please
━━━━━━━━━━━━━━━━━
Note (For 1st Question) :

• Figure is provided in the Attachment.​

Attachments:

Answers

Answered by ItzCuteboy8
34

y = 45° (converse of alternate interior angle theorem)

z = 45° (alternate interior angle theorem)

x = 135° (exterior angle theorem)

\large\underline{\orange{\bf Given :-}}

 \\

\to\: \:\sf Cos\varnothing + Sin\varnothing = \sqrt{2} \: Cos\varnothing

 \\

\large\underline{\orange{\bf To \:  Prove :-}}

 \\

\to\: \:\sf Cos\varnothing - Sin\varnothing = \sqrt{2}\:Sin\varnothing

 \\

\large\underline{\orange{\bf Solution :-}}

 \\

\sf Cos\varnothing + Sin\varnothing = \sqrt{2} \: Cos\varnothing

 \\

:\implies\sf Sin\varnothing = \sqrt{2} \: Cos\varnothing - Cos\varnothing

 \\

:\implies\sf Sin\varnothing = Cos\varnothing  \: (\sqrt{2} - 1)

 \\

:\implies\sf Sin\varnothing = \dfrac{Cos\varnothing \: (\sqrt{2} -1) (\sqrt{2} + 1)}{(\sqrt{2} + 1)}

 \\

:\implies\sf Sin\varnothing = \dfrac{Cos\varnothing \: (2 -1)}{(\sqrt{2} + 1)}

 \\

:\implies\sf (\sqrt{2} + 1) \: Sin\varnothing = Cos\varnothing

 \\

:\implies\sf\sqrt{2} \: Sin\varnothing + Sin\varnothing = Cos\varnothing

 \\

:\implies\sf  Cos\varnothing = \sqrt{2} \: Sin\varnothing + Sin\varnothing

 \\

:\implies\sf  Cos\varnothing - Sin\varnothing = \sqrt{2} \: Sin\varnothing

 \\

HENCE PROVED

Answered by Aeviternal
0

Answer:

UTARSHHH hereeee doo u still use brainly?????

Similar questions