Math, asked by rachanakothari77, 1 month ago

Find the values of x, y, z in the following diagram:​

Attachments:

Answers

Answered by dsathpathy1
0

Answer:

Sorry

Step-by-step explanation:

I Don't Understand

Answered by Anonymous
22

\huge\fbox \red{✔AN} {\colorbox{crimson}{SW}}\fbox\red{ER✔}

\Large{\textsf{\textbf{\underline{\underline{To\:Find\::}}}}}

Value of x.

Value of y.

Value of z.

\Large{\textsf{\textbf{\underline{\underline{Solution\::}}}}}

As we know that,

☆ If two sides of a triangle are equal, then their corresponding angles are also equal to each other.

In ∆ABC,

: \: \leadsto \rm{BC\:=\:AC}\quad (Given)

Thus,

✔ Their corresponding angles are also equal.

\dashrightarrow\:\tt{\angle{BAC}\:=\:\angle{ABC}\:}

According to the question,

\rm{\angle{BAC}\:=\:32^{\circ}\:}

: \: \leadsto \rm{\angle{ABC}\:=\:x\:=\:32^{\circ}\:}

: \: \leadsto \bf \green{x\:=\:32^{\circ}\:}

Again,

In ∆ABC,

: \: \leadsto \rm{\angle{BAC}\:+\:\angle{ABC}\:+\:\angle{ACB}\:=\:180^{\circ}\:}

: \: \leadsto \rm{32^{\circ}\:+\:32^{\circ}\:+\:\angle{ACB}\:=\:180^{\circ}\:}

: \: \leadsto \rm{64^{\circ}\:+\:\angle{ACB}\:=\:180^{\circ}\:}

: \: \leadsto \rm{\angle{ACB}\:=\:180^{\circ}\:-\:64^{\circ}\:}

: \: \leadsto \bf {\angle{ACB}\:=\:116^{\circ}\:}

As we know that,

Angle made by a straight line is always 180°.

: \: \leadsto \rm{\angle{ACB}\:+\:y\:=\:180^{\circ}\:}

: \: \leadsto \rm{116^{\circ}\:+\:y\:=\:180^{\circ}\:}

: \: \leadsto \rm{y\:=\:180^{\circ}\:-\:116^{\circ}\:}

: \: \leadsto {\bf{\green{y\:=\:64^{\circ}\:}}}

Now,

In ∆BCD,

\longrightarrow\:{\tt{BC\:=\:BD}}~~~(Given)

\longrightarrow\:\tt{\angle{BDC}\:=\:y\:}

\longrightarrow\:\tt{\angle{BDC}\:=\:64^{\circ}\:}

Again,

In ∆BCD,

: \: \leadsto \rm{\angle{BDC}\:+\:y\:+\:z\:=\:180^{\circ}\:}

: \: \leadsto \rm{64^{\circ}\:+\:64^{\circ}\:+\:z\:=\:180^{\circ}\:}

: \: \leadsto \rm{128^{\circ}\:+\:z\:=\:180^{\circ}\:}

: \: \leadsto \rm{z\:=\:180^{\circ}\:-\:128^{\circ}\:}

: \: \leadsto\:{\bf{\green{z\:=\:52^{\circ}\:}}}

Similar questions