Math, asked by neelloriya1, 3 months ago

Find the values of y for which the distance between the points P( 2 , – 5 ) and Q ( 10 , y ) is 10 units.​

Answers

Answered by Tomboyish44
42

Answer:

y = 1, -11

Step-by-step explanation:

According to the question;

  • P = (2, -5)
  • Q = (10, y)
  • PQ = 10 units.

‎‎

For any two points with the co-ordinates (x₁, y₁) and (x₂, y₂), the formula used to calculate the distance is;

\sf Distance \ Formula = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

We'll substitute the values given in the question in the formula to find out the value of 'y'.

\sf \dashrightarrow \ PQ = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

\sf \dashrightarrow \ 10 = \sqrt{(2 - 10)^2 + (-5 - y)^2}

\sf \dashrightarrow \ 10 = \sqrt{(-8)^2 + (-5 - y)^2}

Square on both sides;

\sf \dashrightarrow \ \Big(10\Big)^2 = \Big(\sqrt{(-8)^2 + (-5 - y)^2} \ \Big)^2

\sf \dashrightarrow \ 100 = (-8)^2 + (-5 - y)^2

\sf \dashrightarrow \ 100 = 64 + (-5)^2 + (y)^2 - 2(-5)(y)

\sf \dashrightarrow \ 100 - 64 = 25 + y^2 + 10y

\sf \dashrightarrow \ 36 = 25 + y^2 + 10y

\sf \dashrightarrow \ y^2 + 10y = 36 - 25

\sf \dashrightarrow \ y^2 + 10y = 11

\sf \dashrightarrow \ y^2 + 10y - 11 = 0

Splitting the middle term;

  • Sum ➝ +10
  • Product ➝ -11
  • Split ➝ 11 × -1

\sf \dashrightarrow \ y^2 + 11y - y - 11 = 0

\sf \dashrightarrow \ y(y + 11) - 1(y + 11) = 0

\sf \dashrightarrow \ (y - 1) (y + 11) = 0

Therefore y = 1, or y = -11, we'll substitute both values in the distance formula to see if both cases are true.

Case I:

y = 1

\sf \dashrightarrow \ PQ = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

\sf \dashrightarrow \ 10 = \sqrt{(2 - 10)^2 + (-5 - 1)^2}

\sf \dashrightarrow \ 10 = \sqrt{(-8)^2 + (-6)^2}

\sf \dashrightarrow \ 10 = \sqrt{64 + 36}

\sf \dashrightarrow \ 10 = \sqrt{100}

\sf \dashrightarrow \ 10 = 10

LHS = RHS

∴ y = 1 is one of the answers.

Case II:

y = -11

\sf \dashrightarrow \ PQ = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

\sf \dashrightarrow \ 10 = \sqrt{(2 - 10)^2 + (-5 - (-11))^2}

\sf \dashrightarrow \ 10 = \sqrt{(-8)^2 + (-5 + 11)^2}

\sf \dashrightarrow \ 10 = \sqrt{64 + (6)^2}

\sf \dashrightarrow \ 10 = \sqrt{64 + 36}

\sf \dashrightarrow \ 10 = \sqrt{100}

\sf \dashrightarrow \ 10 = 10

LHS = RHS

∴ y = -11 is also one of the answers.

Therefore, the values of 'y' are 1 and -11.

Answered by Anonymous
90

Answer:

Given :-

  • The distance between the points P(2 , - 5) and Q(10 , y) is 10 units.

To Find :-

  • What is the value of y.

Formula Used :-

\diamondsuit \longmapsto \sf\boxed{\bold{\pink{Distance\: Formula =\: \sqrt{{(x_1 - x_2)}^{2} + {(y_1 - y_2)}^{2}}}}}\\

where,

  • (x₁ - x₂) = Coordinates for the first point
  • (y₁ - y₂) = Coordinates for the second point

Solution :-

Given :

  • P(2 , - 5)
  • Q(10 , y)
  • PQ = 10 units

Now, according to the question by using the formula we get :

 \implies \sf PQ =\: \sqrt{{(x_1 - x_2)}^{2} + {(y_1 - y_2)}^{2}}\\

Here,

  • PQ = 10 units
  • x₁ = 2
  • x₂ = 10
  • y₁ = - 5
  • y₂ = y

 \implies \sf 10 =\: \sqrt{{(2 - 10)}^{2} + {(- 5 - y)}^{2}}\\

 \implies \sf 10 =\: \sqrt{{(- 8)}^{2} + {(- 5 - y)}^{2}}\\

Now, by squaring both sides we get :

 \implies \sf {\bigg \lgroup 10 \bigg \rgroup}^{2} =\: {\bigg \lgroup \sqrt{{(- 8)}^{2} + {( - 5 - y)}^{2}} \bigg \rgroup}^{2} \\

 \implies \sf 100 =\: {(- 8)}^{2} + {(- 5 - y)}^{2}\\

 \implies \sf 100 =\: (- 8)(- 8) + {(- 5)}^{2} + {(y}^{2} - 2(- 5)(y)\\

 \implies \sf 100 =\: 64 + 25 + {(y)}^{2} + 10y\\

 \implies \sf 100 - 64 =\: 25 + {(y)}^{2} + 10y\\

 \implies \sf 36 =\: 25 + {(y)}^{2} + 10y\\

 \implies \sf 36 - 25 =\: {(y)}^{2} + 10y\\

 \implies \sf 11 =\: {(y)}^{2} + 10y\\

 \implies \sf {(y)}^{2} + 10y - 11 =\: 0\\

 \implies \sf {(y)}^{2} + (11 - 1)y - 11 =\: 0\\

 \implies \sf {(y)}^{2} + 11y - y - 11 =\: 0\\

 \implies \sf y(y + 11) - 1(y + 11) =\: 0\\

 \implies \sf (y + 11)(y - 1) =\: 0\\

 \implies \sf (y + 11) =\: 0

 \implies \sf\bold{\red{y =\: - 11}}

Either,

 \implies \sf (y - 1) =\: 0

 \implies \sf\bold{\red{y =\: 1}}

\therefore The value of y is - 11 or 1 .

Similar questions