Math, asked by zuhaibmuzaffarshah, 1 month ago

Find the values of y for which the distance between the points P (4, -5) and Q (12, y) is 10 units.​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

Distance between the points P (4, -5) and Q (12, y) is 10 units.

We know,

Distance Formula

Let us consider a line segment joining the points A (x₁ , y₁ ) and B (x₂ , y₂), then distance between A and B is denoted as AB and given by

{\underline{\boxed{\sf{\quad AB = \sqrt{(x_2 - x_1)^2 +(y_2 - y_1)^2} \quad}}}}

Here,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{x_1 = 4} \\  \\ &\sf{x_2 = 12}\\ \\  &\sf{y_1 =  - 5}\\ \\  &\sf{y_2 = y}\\ \\  &\sf{AB = 10} \end{cases}\end{gathered}\end{gathered}

So, on substituting the values, we get

\rm :\longmapsto\:10 =  \sqrt{ {(12 -4 )}^{2}  +  {(y + 5)}^{2} }

\rm :\longmapsto\:10 =  \sqrt{ {8}^{2}  +  {(y + 5)}^{2} }

\rm :\longmapsto\:10 =  \sqrt{ 64  +  {(y + 5)}^{2} }

On squaring both sides, we get

\rm :\longmapsto\:100 = 64 +  {(y + 5)}^{2}

\rm :\longmapsto\:100 - 64  =  {(y + 5)}^{2}

\rm :\longmapsto\:36  =  {(y + 5)}^{2}

\rm :\longmapsto\: {6}^{2}   =  {(y + 5)}^{2}

\rm \implies\:y + 5 \: =  \:   \pm \: 6

\rm \implies\:y \: =  \:   \pm \: 6 - 5

\rm \implies\:y \: =  \: 6 - 5 \:  \: or \:  \:  - 6 - 5

\rm \implies\:y \: =  \: 1 \:  \: or \:  \:  - 11

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Section Formula :-

Let us consider a line segment joining the points A (x₁ , y₁ ) and B (x₂ , y₂) and Let C (x, y) be any point on AB which divides AB internally in the ratio m : n, then coordinates of C is

{\underline{\boxed{\sf{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n},  \dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}

Midpoint Formula :-

Let us consider a line segment joining the points A (x₁ , y₁ ) and B (x₂ , y₂) and Let C (x, y) be mid point on AB, then coordinates of C is

{\underline{\boxed{\sf{\quad (x,y) \:  =  \: \bigg(\dfrac{x_1 + x_2}{2} \; ,\; \dfrac{y_1 + y_2}{2}\bigg) \quad}}}}

Similar questions