Math, asked by pradhanu133, 6 months ago

Find the variance of the following data:
12. 22. 28. 24. 21. 16. 31, 14
41.54
45.63
25.33
39.25​

Answers

Answered by chavansachin7066
2

Answer:

39.25Step-by-step explanation:

Answered by jenisha145
0

The variance of the following data is 39.25

Step-by-step explanation:

Given:

x_{i}= 12, 22, 28, 24, 21, 16, 31, 14

To find:

variance(\sigma^2)

Formula:

(\sigma^2)=\sum \frac{(x_{i}-\bar x)^2}{N}

Solution:

Let's calculate the mean of the observations first,N=8

Mean(\bar x)= sum of all observations/number of observations

\bar x= 12+22+28+24+21+16+31+14/8

     =168/8

∴ mean(\bar x)=21

Next we will calculate x_{i}-\bar x for all x_{i} values

x_{i}-\bar x= 12-21 =-9\\\\x_{i}-\bar x=22-21=1\\\\x_{i}-\bar x=28-21=7\\\\x_{i}-\bar x=24-21=3\\\\x_{i}-\bar x=21-21=0\\\\x_{i}-\bar x=16-21=-5\\\\x_{i}-\bar x=31-21=10\\\\x_{i}-\bar x=14-21=-7

The sum of (x_{i}-\bar x) will be equal to

-9+1+7+3+0+(-5)+10+(-7)

∴ ∑(x_{i}-\bar x)=0

Let's square the (x_{i}-\bar x) values

(x_{i}-\bar x)^2=(-9)²=81

                =(1)²=1

                =(7)²=49

                =(3)²=9

                =(0)²=0

                =(-5)²=25

                =(10)²=100

                =(-7)²=49

Next we sum all the (x_{i}-\bar x)^2 values

∴ ∑(x_{i}-\bar x)^2= 81+1+49+9+0+25+100+49

∴ ∑ (x_{i}-\bar x)^2= 314

Putting all the values in the formula

(\sigma^2)=\sum \frac{(x_{i}-\bar x)^2}{N}

(\sigma^2)=\frac{314}{8}

(\sigma^2)=39.25

∴ The variance is 39.25

Similar questions