Physics, asked by Gargi3567, 11 months ago

Find the velocity at which mass of a proton becomes 1.1 times its rest mass, mp = 1.6 x 10⁻²⁷ kg. Also, calculate corresponding temperature. For simplicity, consider a proton as non-interacting ideal-gas particle at 1 atm pressure.[c = 3 x 10⁸ ms⁻¹ , kB = 1.38 x 10⁻²³ SI]

Answers

Answered by deependra1806hu
0

Answer: velocity = 1.24*10^8 m/s and temperature is 4830.2 kelvin.

Explanation:

Attachments:
Answered by bestwriters
0

The velocity of proton is \bold{1.28 \times 10^{8} \ \mathrm{m} / \mathrm{s}}

The corresponding temperature is \bold{7.65 \times 10^{12} \ \mathrm{K}}

Given:

Mass of a proton becomes 1.1 times its rest mass:

\bold{\Rightarrow m=1 \cdot 1 \ m_{0}}

mp = 1.6 × 10⁻²⁷ kg

To find:

Velocity of proton = ?

Corresponding temperature = ?

Solution:

Velocity of the proton:

\bold{\mathrm{m}=\frac{\mathrm{m}_{\mathrm{o}}}{ \sqrt{1-\frac{\mathrm{V}^{2}}{ \mathrm{c}^{2}}\right}}}

On bringing mass on one side, we get,

\bold{\sqrt{1-\frac{\mathrm{V}^{2}}{\mathrm{c}^{2}}\right)}=\frac{\mathrm{m}_{\mathrm{o}}}{\mathrm{m}}}

From question,

\bold{\Rightarrow m=1 \cdot 1 \ m_{0}}

\bold{1-\frac{V^{2}}{c^{2}}=\left(\frac{m_{o}}{1.1 \ m_{o}}\right)^{2}}

\bold{0.173=\mathrm{V}^{2} / \mathrm{c}^{2}}

\bold{\mathrm{v}^{2}=0.173 \times \mathrm{c}^{2}}

Where, c = Velocity of light \bold{=3 \times 10^{8} \ m/s}

\bold{v^2=0.173 \times\left(3 \times 10^{8}\right)^{2}}

\bold{\mathrm{V}=1.28 \times 10^{8} \ \mathrm{m} / \mathrm{s}}

Temperature of the proton:

Energy is given by the formula:

\bold{E=m c^{2}}

\bold{E=1 \cdot 1 \mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}}

On substituting the know values, we get,

\bold{E=1 \cdot 1 \times 1 \cdot 6 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}}

\bold{E=1.58 \times 10^{-10} \ \mathrm{J}}

Energy and the temperature is related by the formula given below:

\bold{E=\frac{3}{2} K T}

\bold{\mathrm{T}=\frac{2}{3}(\mathrm{E} / \mathrm{K})}

\bold{\Rightarrow T= \frac{2}{3}\times \frac{1.58 \times 10^{-10}}{1.38 \times 10^{-23}}}

\bold{\therefore T = 7.65 \times 10^{12} \ \mathrm{K}}

Similar questions