Physics, asked by govinds326, 8 months ago


Find the velocity of block at time t = 4 sec and t = 10 sec
A) 4m/S2, 2.5 m/s
B) Om/s, Om/s
C) Om/S, 2.5 m/s
D) 2.5m/s, 2.5m/s​

Attachments:

Answers

Answered by nirman95
22

Given:

A 4 kg block is being pulled upwards with the variable force.

To find:

Velocity of the block at t = 4 sec and t = 10 sec.

Calculation:

The minimum time required for the force to lift the 4 kg block will be :

 \therefore \: F = mg

 =  >  \: 5t= 4 \times 10

 =  >  \: t= 4 \times 2

 =  >  \: t= 8 \: sec

So, till t = 8 seconds, the block will remain stationary.

Hence Velocity at t = 4 sec will be 0 m/s.

Now , we need to apply calculus to solve the remaining problem:

 \therefore \: a =  \dfrac{5t}{4} - g

 =  >  \:  \dfrac{dv}{dt} =   \dfrac{5t}{4}  - g

 \displaystyle =  >  \:   \int dv =  \dfrac{5}{4}  \: \int t \: dt -  g \int dt

Putting limits:

 \displaystyle =  >  \:   \int_{0}^{v} dv =  \dfrac{5}{4} \: \int_{8}^{10} t\: dt - 10 \int_{8}^{10}dt

 \displaystyle =  >  \:   v=  \frac{5}{8}   \bigg \{ {t}^{2}  \bigg  \}_{8}^{10}  - 10 (10 - 8)

 \displaystyle =  >  \:   v=  \frac{5}{8}  (100 - 64) - 20

 \displaystyle =  >  \:   v= ( \frac{5}{8}  \times 36) - 20

 \displaystyle =  >  \:   v=  22.5 - 20

 \displaystyle =  >  \:   v=  2.5 \: m {s}^{ - 1}

Velocity at t = 10 sec will be 2.5 m/s.

HOPE IT HELPS.

Attachments:
Answered by Arceus02
4

\underline{\textbf{\textsf{ \purple{Solution}:- }}}

First we need to find out the minimum time taken by the block to leave the surface.

When the block will leave the surface,

\sf{F = mg}

\longrightarrow \sf{5t = 4 * 10}

\longrightarrow \sf{ {t}_{min} = 8 sec}

\sf{\\}

\underline{\bf{ \red{ {1}^{st}\:part } :- }}

As the minimum time required by the body to leave the surface is 8 seconds, that means the body will still be at rest at t = 4 second. So, velocity at t = 4 sec will be,

\longrightarrow \underline{\underline{\sf{ \green{ {v}_{4} = 0 m/s } }}}

\sf{\\}

\underline{\bf{ \red{ {2}^{nd}\:part } :- }}

At t = 10 sec, the body will have left the surface and moving upwards with an acceleration.

Let the upward acceleration of the body be \sf{a\:m/s^2}

Then, from F.B.D we can say that,

\sf{5t - mg = ma}

\longrightarrow \sf{a = \dfrac{5t - mg}{m}}

\longrightarrow \sf{a = \dfrac{5}{m}t - g}

\longrightarrow \sf{a = \dfrac{5}{4}t - g}

\longrightarrow \sf{ \dfrac{dv}{dt} = \dfrac{5}{4}t - g}

\longrightarrow \displaystyle \sf{ v = \int \dfrac{5}{4}t - g }

Putting limits,

\displaystyle \longrightarrow \sf{ v = \int_{8}^{10} \dfrac{5}{4}t - g }

\displaystyle \longrightarrow \sf{v = \int_{8}^{10} \dfrac{5}{4}t\:dt - \int_{8}^{10}g\: dt}

\longrightarrow \sf{v = \dfrac{5}{4}\Bigg\{\dfrac{t^2}{2}\Bigg\}_{8}^{10} - {{g}_{}}_{8}^{10} }

\longrightarrow \sf{v = \dfrac{5}{8}\Bigg\{10^2 - 8^2\Bigg\} - 10\Bigg\{10 - 8\Bigg\}}

\longrightarrow \sf{v = \dfrac{5}{8}36 - 20}

\longrightarrow \sf{v = 22.5 - 20}

\longrightarrow \underline{\underline{\sf{ \green{ {v}_{10} = 2.5\:m/s } }}}

\sf{\\}

Hence, the answer is,

\longrightarrow \underline{\underline{\sf{ \green{A)\:0m/s,\:2.5m/s} }}}

Similar questions