Math, asked by Saifkhan6324, 1 year ago

Find the vertices foci length of latus rectum and eccentricity of x^2÷16+y^2÷64=1

Answers

Answered by thameshwarp9oqwi
0
x²/16 + y²/64 = 1
(x/4)²+(y/8)² = 1

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Vertices=(0,\pm8)}}}\\

\green{\tt{\therefore{Foci=(0,\pm4\sqrt{3})}}}\\

\green{\tt{\therefore{Latus\:rectum(LL')=4}}}

\green{\tt{\therefore{Eccentricity=\frac{\sqrt{3}}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies eqn \: of \: ellipse =  \frac{{x}^{2}}{16} + \frac{ {y}^{2} }{64}  = 1} \\  \\ \red {\underline \bold{to \: find: }} \\ \tt{:\implies Vertices=?}\\ \\ \tt{:\implies Foci=?}\\ \\ \tt {: \implies Length \: of \: latus \: rectum (LL')=?}\\\\ \tt{:\implies Eccentricity=?}

• According to given question :

 \tt{: \implies  \frac{ {x}^{2} }{16}  +  \frac{ {y}^{2} }{64}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   +   \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  16} \\   \\   \tt{\circ \:  {b}^{2}  = 64} \\\\ \tt{\circ\: a< b}

 \bold{As \: we \: know \: that} \\   \tt{: \implies vertices = (0, \pm b)} \\  \\   \green{\tt{: \implies vertices = (0, \pm 8)}} \\ \\  \bold{As \: we \: know \: that} \\  \tt{ :   \implies  {a}^{2}   =  {b}^{2}(1 -  {e}^{2}  )} \\  \\   \tt{: \implies16 = 64(1 -  {e}^{2} )} \\   \\   \tt{: \implies  {e}^{2}  = 1 -  \frac{1}{4} } \\  \\   \tt{: \implies  {e}^{2}  =  \frac{3}{4} } \\  \\    \green{\tt{: \implies e =  \frac{ \sqrt{3} }{2} }}\\   \\   \bold{As \: we \: know \: that} \\   \tt{: \implies foci = (0, \pm be)} \\  \\   \green{\tt{: \implies Foci= (0, \pm 4  \sqrt{3} )}} \\  \\

 \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {a}^{2}  }{b} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 16 }{8} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  4}}

Similar questions