Math, asked by Thepinkrose, 1 month ago

Find the volume and total surface area of a cube whose each edge is :
(i) 8 cm
(ii) 2 m 40 cm.​

Answers

Answered by smartypansy
0

Answer:

(i) 512  (ii) 13824000

Step-by-step explanation:

Volume= edge^{3}

8^{3}=512

2m 40cm = 240cm

240^{3}= 13824000

Answered by ShiningBlossom
3

(i) $\rm (Edge)^3$ = Volume of a cube

 \rm \implies \: (Edge)^3 = 216 \:  cm^3

 \rm \implies \: Edge =  \sqrt[3]{216}

 \rm \implies \: Edge = \sqrt[3]{(3×3×3×2×2×2)}

\rm \implies \: Edge =3 \times 2

\rm \implies \: Edge =6 \: cm

 \rm

(ii) $\rm (Edge)^3$ = Volume of a cube

 \rm \:∴ (Edge)^3 = 1.728 m^3

 \rm \implies \:  (Edge)^{3}  = \frac{1.728}{1.000}  \\

\rm \implies \:  (Edge)^{3}  =  \frac{1728}{1000} \\

\rm \implies \:   {(Edge)^{3}  =   \sqrt[3] \frac{(2×2×2×2×2×2×3×3×3)}{(10×10×10)} } \\

\rm \implies Edge =  \frac{2 \times 2 \times 3}{10}  \\

\rm \implies Edge =  \frac{12}{10}  \\

 \rm \implies \: Edge = 1.2  \: m

Similar questions