Math, asked by urusa60, 3 months ago

find the volume , CSA and TSA of a cone with the given radius 3 m and height 4m​

Answers

Answered by bradlamar691
1

Answer:

CSA=15\pi m^{2} , TSA = 24\pi m^{2}

Step-by-step explanation:

Radius(r) = 3 m

Height(h) = 4 m

Slant Height(l) = \sqrt{r^{2}+h^{2}  }

\sqrt{9 + 16}

\sqrt{25}

⇒±5

Since Distance cannot be negative

Slant Height(l) = 5 m

Curved Surface Area (CSA) = \pi r} l = \frac{22}{7}*3*5

15\pi m^{2}

Total Surface Area (TSA) = \pi rl+\pi r^{2}

15\pi  + 9\pi

24\pi m^{2}

Answered by suhanii27
1

Step-by-step explanation:

volume of cone =

radius of cone = 3m

height of cone = 4m

 =   \frac{1}{3} \pi {r}^{2} h \\  \frac{1}{3}  \times  \frac{22}{7}  \times 3 \times 3 \times 4 \\  \frac{22}{7}  \times 12 \\ 37.714  \: {m}^{3}

Csa of cone =

radius of cone = 3m

height of cone = 4m

l =  \sqrt{ {r}^{2}  +  {h}^{2} }  \\ l =  \sqrt{ {3}^{2}  +  {4}^{2} }  \\ l =  \sqrt{9 + 16}  \\ l =  \sqrt{25}  \\ l = 5m \\ csa \: of \: cone \:  = \pi \: rl \\  =  \frac{22}{7}  \times 3 \times 5 \\  = 47.142 {m}^{2}

Tsa of cone =

radius of cone = 3m

height of cone (L) = 5m

 = \pi \: r(r + l)  \\  =  \frac{22}{7} \times 3 (3 + 5) \\  =  \frac{66}{7}  (8m) \\  = 75.428 {m}^{2}

i hope it will help you buddy .

Similar questions