Math, asked by BrainlyExpert01, 13 hours ago

Find the volume, curved surface area and the total surface area of hemisphere of diameter 7 cm.​

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given that,

Diameter of hemi - sphere, d = 7 cm

We know,

\boxed{\tt{ Radius \:  =  \:  \frac{1}{2} \: Diameter \: }} \\

So,

\rm\implies \:Radius, \: r \:  =  \: \dfrac{7}{2} \: cm

1. Volume of hemisphere

We know, Volume of hemisphere of radius r is given by

\boxed{\tt{ Volume_{(hemisphere)} \:  =  \:  \frac{2}{3} \: \pi \:  {r}^{3} \: }} \\

So, on substituting the value of r, we get

\rm \:  Volume_{(hemisphere)} \:  =  \:  \frac{2}{3} \:  \times  \: \dfrac{22}{7}  \:  \times  \:   {\bigg[\dfrac{7}{2} \bigg]}^{3}  \:  \\

\rm\implies \:\boxed{\tt{  \: Volume_{(hemisphere)} \:  =  \:  \frac{539}{6} \:  {cm}^{3} \: }} \\

2. Curved Surface Area of hemisphere

We know, Curved Surface Area of hemisphere of radius r is given by

\boxed{\tt{  \: CSA_{(hemisphere)} \:  =  \: 2 \: \pi \:  {r}^{2}  \: }} \\

So, on substituting the value of r, we get

\rm \: CSA_{(hemisphere)} \:  =  \: 2 \times \dfrac{22}{7}  \times  {\bigg[\dfrac{7}{2} \bigg]}^{2}

\rm\implies \:\boxed{\tt{  \: CSA_{(hemisphere)} \:  =  \: 77 \:  {cm}^{2} \: }} \\

3. Total Surface Area of hemisphere

We know, Total Surface Area of hemisphere of radius r is given by

\boxed{\tt{  \: TSA_{(hemisphere)} \:  =  \: 3 \: \pi \:  {r}^{2}  \: }} \\

So, on substituting the value of r, we get

\rm \: TSA_{(hemisphere)} \:  =  \: 3 \times \dfrac{22}{7}  \times  {\bigg[\dfrac{7}{2} \bigg]}^{2}

\rm\implies \:\boxed{\tt{  \: TSA_{(hemisphere)} \:  =  \:  \frac{231}{2} \:  {cm}^{2} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions