Math, asked by anitapaul814, 9 months ago

find the volume of a cone its total surface area is 7128sq cm and radius of base is 28cm

Answers

Answered by Anonymous
20

Question  find the volume of a cone its total surface area is 7128sq cm and radius of base is 28cm  

TSA = 7128cm^2

Radius = 28cm

TSA = pi r (l+r) = 7128

l+28 = 7128×7/22×28

l+28= 81

l=81-28

l = 53cm

Now ,

h = √l^2-r^2

h = √ 53^2 - 28^2

h = √ 2025

h = 45cm

volume = 1/3 pi r^2 h

volume = 1/3×22/7×28×28×45

volume = 36960cm^3

Answered by Anonymous
62

Given :

  • Total surface area of cone = 7128 cm²
  • Radius of base = 28 cm

To Find :

  • Volume of the cone

Solution :

Let the height of the cone be h cm.

Formula :

\bold{\large{\boxed{\mathtt{\blue{TSA_{cone}\:=\:\pi\:r\:(r\:+\:l)}}}}}

★ Where,

  • r = radius of cone
  • l = slant height of cone

\longrightarrow\mathtt{7128\:=\:\pi\:r\:(l+r)}

\longrightarrow \mathtt{7128\:=\:28\pi\:(l\:+\:28)}

\longrightarrow \mathtt{7128\:=\:28\:\times{\dfrac{22}{7}\:\:(l+28)}}

\longrightarrow \mathtt{7128\:=\:4\:\times\:22\:(l+28)}

\longrightarrow \mathtt{7128\:=\:88\:(l+28)}

\longrightarrow \mathtt{7128\:=\:88l\:+\:2464}

\longrightarrow \mathtt{7128-2464\:=\:88l}

\longrightarrow \mathtt{4664=88l}

\longrightarrow \mathtt{\dfrac{4664}{88}\:=\:l}

\longrightarrow \mathtt{53\:=\:l}

\bold{\large{\boxed{\rm{\pink{Slant\: height\: of\: cone\: =\: l\: = \:53 \:cm}}}}}

★ Now, we need to figure out h of the cone to calculate the volume of the cone.

\longrightarrow \mathtt{l^2\:=\:r^2\:+\:h^2}

\longrightarrow \mathtt{53^2\:=\:28^2\:+\:h^2}

\longrightarrow \mathtt{2809\:=\:784\:+\:h^2}

\longrightarrow \mathtt{2809\:-784\:=\:h^2}

\longrightarrow \mathtt{2025\:=\:h^2}

\longrightarrow \mathtt{\sqrt{2025}\:=\:h}

\longrightarrow \mathtt{45\:=\:h}

\bold{\large{\boxed{\mathtt{\green{Height\: of\: cone\: =\: h\: = \:45 \:cm}}}}}

Formula :

\bold{\large{\boxed{\rm{\red{Volume_{cone}\:=\:{\dfrac{1}{3}\:\:\pi\:r^2\:h}}}}}}

★ Where,

  • r = radius = 28 cm
  • h = height = 45 cm

\longrightarrow \mathtt{\dfrac{1}{3}\:\pi\:\times\:28^2\:\times\:45}

\longrightarrow \mathtt{\dfrac{1}{3}\times} \mathtt{\dfrac{22}{7}\:\times} \mathtt{28\:\times\:28\:\times\:45}

\longrightarrow \mathtt{\dfrac{776160}{21}}

\longrightarrow \mathtt{36960}

\bold{\large{\boxed{\rm{\purple{Volume\:of\:cone\:=\:36960\:cm^3}}}}}

Similar questions
Math, 9 months ago