Math, asked by tanu729, 11 months ago


 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

Answers

Answered by parvd
15

Using Basic laws which we read in classs 9th:-

the solution is as followed

Answer:-

a=11 and b= -6

Solution!

a) Firstly we rationalised the fraction sum as it is under root in the denominator.

b) Later we tried to solve the Calculations in Numerator part and denominator. simply.

c) we made it to ths form of a+b3

d) Compared a and b to the given solution.

Atlast,

ignoring my handritting kindly check the attachmemt!!

Attachments:
Answered by Anonymous
8

Answer:

a = 11, b = - 6

Step-by-step explanation:

Given : {\sf{\ \ {\dfrac{ 5 + 2 {\sqrt{3}} }{ 7 + 4 {\sqrt{3}} }} = a + b {\sqrt{3}} }}

To Find : a & b

Solution :

Rationalising the denominator, we get

\Longrightarrow{\sf{ {\dfrac{ 5 + 2 {\sqrt{3}} }{ 7 + 4 {\sqrt{3}} }} \times {\dfrac{ 7 - 4 {\sqrt{3}} }{ 7 - 4 {\sqrt{3}} }} }}

_____________________________

{\boxed{\tt{Identity \ : \ (a + b)(a - b) = a^2 - b^2 }}}

{\tt{Here, \ a = 7, \ b = 4 {\sqrt{3}} }}

_____________________________

\Longrightarrow{\sf{ {\dfrac{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}{ (7)^2 - (4 {\sqrt{3}} )^2 }} }}

_____________________________

\Longrightarrow{\sf{ {\dfrac{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}{ 49 - 48 }} }}

_____________________________

\Longrightarrow{\sf{ {\dfrac{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}{ 1 }} }}

_____________________________

\Longrightarrow{\sf{ (5 + 2 {\sqrt{3}} )( 7 - 4 {\sqrt{3}} )}}

_____________________________

\Longrightarrow{\sf{ 5 (7 - 4 {\sqrt{3}} ) + 2 {\sqrt{3}} (7 - 4 {\sqrt{3}} ) }}

_____________________________

\Longrightarrow{\sf{ 5(7) + 5(- 4 {\sqrt{3}} ) + 2 {\sqrt{3}} (7) + 2 {\sqrt{3}} (- 4 {\sqrt{3}} ) }}

_____________________________

\Longrightarrow{\sf{ 35 - 20 {\sqrt{3}} + 14 {\sqrt{3}} - 24 }}

_____________________________

\Longrightarrow{\sf{ 11 - 6 {\sqrt{3}} }}

_____________________________

We can write this as :

\Longrightarrow{\sf{ 11 + (- 6) {\sqrt{3}} }}

_____________________________

On comparing this with a + b√3, we get

\Longrightarrow{\boxed{\sf{a = 11}}}

\Longrightarrow{\boxed{\sf{b = - 6}}}

Similar questions