Physics, asked by jcid, 2 months ago

Find the volume of a cylinder having a height of 28 cm and radius 7 cm.

Answers

Answered by jeevankishorbabu9985
0

Answer:

cylinder |===> height 28 cm (centimeters)

base radius 7 cm (centimeters)

| volume =1372 π cm^3 (cubic centimeters)≈4310.27 cm^3 (cubic centimeters)

Explanation:

 \small{ \color{lime}1372 π cm^3 (cubic centimeters)≈4310.27 cm^3 (cubic centimeters)}

Answered by INSIDI0US
2

Step-by-step explanation:

Question :-

  • Find the volume of cylinder whose height is 28 cm and radius is 7 cm.

To Find :-

  • Volume of cylinder.

Solution :-

Given :

  • Height = 28 cm
  • Radius = 7 cm

By using the formula,

{\longrightarrow{\sf Volume\ of\ cylinder\ =\ \pi r^2h}}

Where,

  • r = radius of the cylinder
  • h = height of the cylinder

According to the question, by using the formula, we get :

{\longrightarrow{\sf Volume\ of\ cylinder\ =\ \pi r^2h}}

{\longrightarrow{\sf \dfrac{22}{7} \times (7)^2 \times 28}}

{\longrightarrow{\sf \dfrac{22}{7} \times 7 \times 7 \times 28}}

{\longrightarrow{\sf \dfrac{22}{\cancel7} \times \cancel7 \times 7 \times 28}}

{\longrightarrow{\sf 22 \times 7 \times 28}}

{\longrightarrow{\sf 4,312\ cm^3}}

∴ Hence, volume of cylinder is 4,312 cm³.

More To Know :-

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

Similar questions