Math, asked by sambro4, 3 months ago

Find the volume of a cylinder of height 8cm and radius 14 cm​

Answers

Answered by Anonymous
34

Given:

  • Height of cylinder = 8cm
  • Radius of cylinder = 14cm

To find:

  • Volume of the cylinder.

Solution:

We have height and radius of the cylinder and need to find its volume.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{14\: cm}}\put(9,17.5){\sf{8\: cm}}\end{picture}

We know that, volume of cylinder is given by

☆ Volume = πr²h

\tt\longmapsto{Volume = \dfrac{22}{7} \times 14 \times 14 \times 8}

\tt\longmapsto{Volume = 22 \times 2 \times 14 \times 8}

\tt\longmapsto{Volume = 44 \times 112}

\tt\longmapsto{Volume = 4,928\: cm^3}

Hence,

  • Volume of the cylinder is 4,928 cm³.
Answered by Anonymous
7

Correct Question-:

  • Find the volume of a cylinder of height 8cm and radius 14 cm.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{Volume \:of\:Cylinder \: =4,928cm³  .}}}}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{The\:Height \:of\:Cylinder \:\:is\:= \frak{8cm}} & \\\\ \sf{The\:Radius  \:of\:Cylinder :\:is\: \:=\:\frak{14cm}}\end{cases} \\\\

Figure related to question-:

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{14\:cm}}\put(9,17.5){\sf{8\:cm}}\end{picture}

  •  \frak{To\:Find \:\: -:} \begin{cases} \sf{The\:Volume \:of\:Cylinder \:\:}\end{cases} \\\\

Solution-:

  • \underline{\boxed{\star{\sf{\blue{  Volume\:of\:Cylinder\:= \: \pi × (Radius)² × Height.}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{The\:Height \:of\:Cylinder \:\:is\:= \frak{8cm}} & \\\\ \sf{The\:Radius  \:of\:Cylinder :\:is\: \:=\:\frak{14cm}}& \\\\ \sf{\pi = \frac{22}{7}} \end{cases} \\\\

Now ,

  • \implies{\sf{\large {Volume \:of\:Cylinder \: = \frac{22}{7}× (14)²\:×8  }}}
  • \implies{\sf{\large {Volume \:of\:Cylinder \: = \frac{22}{7}× 14×14\:×8  }}}
  • \implies{\sf{\large {Volume \:of\:Cylinder \: = 22× 2×14\:×8  }}}
  • \implies{\sf{\large {Volume \:of\:Cylinder \: = 44×  112}}}
  • \implies{\sf{\large {Volume \:of\:Cylinder \: =4,928cm³ }}}

Hence,

  • \underline{\boxed{\star{\sf{\blue{Volume \:of\:Cylinder \: =4,928cm³  .}}}}}

_________________________________

More To Know

\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

_____________________♡_________________________

Similar questions