Math, asked by sunderlambade1, 1 month ago

find the volume of a cylinder whose height is 10 cm and radius of base is 5 (π = 3.14)​

Answers

Answered by tsjananithendral
0

Answer:

is it correct? kindly reply for it.

Attachments:
Answered by SachinGupta01
9

\bf \:  \underline{Given} :

\sf \: Height = 10 \:  cm

\sf \: Radius  \: of \:  base = 5  \: cm

\sf \: [Note = \pi = 3.14]

\bf \:  \underline{To  \: find} :

\sf \: We  \: have \:  to \:  find \:  the \:  volume \:  of \:  a  \: cylinder.

\bf \:  \underline{ \underline{Solution}} :

\sf \: As \:  we \:  know  \: that,

\boxed{  \pink{\sf \: Volume  \: of \:  cylinder = \pi  \: r^{2} \:  h }}

\sf \implies \: 3.14  \times (5 \: cm^{2} ) \:  \times 10 \: cm

\sf \implies \: 3.14  \times 25 \: cm \:  \times 10 \: cm

\sf \implies \: 3.14  \times 250  \: cm

\sf \implies \: 785 \: cm ^{3}

\sf \boxed{\red{  \sf \: So, \:  volume \:  of \:  cylinder = 785  \: cm ^{3} }}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{5 cm}}\put(9,17.5){\sf{10 cm}}\end{picture}

\sf See\:  the \: above \:diagram\: for\: the \: better \: understanding.

\bf \:  \underline{Some \:  important \:  terms}:

 \sf \:1. \: Volume \:  of  \: Cylinder =  \pi \: r^{2} \:  h

 \sf \: 2. \: Total  \: Surface \:  Area \:  ( TSA )  \: of \:  cylinder = 2 \pi \: r ( r + h )

 \sf \:3. \:  Curved  \: Surface  \: Area  \: ( CSA )  \: of \:  cylinder = 2 \pi \: r \: h

\sf \: 4. \: The \:  value \:  of \:   \pi  \: is  \: \dfrac{22}{7}  \: or \:  3.14  \: in  \: decimal.

 \sf \: \underline{You \:  can  \: remember \:  these \: formula \:  also.} \:

\begin{gathered}\begin{array}{c|c|c}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}\end{gathered}

Attachments:
Similar questions