Math, asked by haneefsadia832, 6 months ago

: Find the volume of a sphere of radius 11.2 cm​

Answers

Answered by MihiraShaik10
2

V≈5884.95

r Radius

11.2

Answered by iTzShInNy
19

Given :

 \\

 \quad \quad\quad \small \sf \: \bold{Radius} \: of \: the \:  \bold{sphere},r  \leadsto  \: \boxed{  \bf 11.2 \: cm }

 \\  \\

To Find :

 \\

\quad \quad\quad \small \sf \: \bold{Volume} \: of \: the \:  \bold{sphere}  \leadsto  \: \boxed{  \bf  ? }

 \\  \\

Required Formula :

 \\

  \quad \quad\quad \small\bigstar {\underline {\boxed { \bf  { \bf \: Volume  \: of  \:  a\: sphere  \:  \tt\blue➦  \:   \bf\frac{4}{3} \bold{\pi  }{r}^{3}  }}}} \bigstar

 \\  \\

Substitution :

 \small { \bf  { \sf \: Volume  \: of  \:  a\: sphere  \:  \tt\red \leadsto \:   \bf\frac{4}{3} \bold{\pi  }{r}^{3}  }}   \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{4}{3} \times  { \frac{22}{7}  } \times {(11.2)}^{3}    \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{4}{3} \times  { \frac{22}{ \cancel7}  } \times { \cancel{11.2} {}^{1.6} } \times 11.2 \times 11.2\\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{4}{3} \times 22 \times 1.6 \times 11.2 \times 11.2  \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{4}{3} \times 22 \times 1.6 \times 125.44  \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{4}{3} \times 22 \times 200.704 \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{4 \times 22}{3} \:  \times 200.704 \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{88}{3}  \times 200.704 \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{88  \times 200.704}{3}  \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf\frac{17661.952}{3}  \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:   \bf 588.73173  \\

\:  \quad \quad \quad \quad \quad \quad  \small\tt\red \leadsto \:  { \underline{\boxed{ \bf \purple{588.7}32 \:  {cm}^{3}}}}   \\

 \\

 \small \sf Hence,we \: got \: the  \: volume  \: of  \: a  \: sphere \\  \small \sf which  \: is \: \red{ 588.732 \: cm³} \:  \:  \:  \:  \:  \:  \quad \quad \quad \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\  \\

Note :

 \\

 \small \sf \: You\: can \: also \: write \:  \green{588.73173 \: cm³}  (approx) \:   \\  \small \sf or  \:  \red{588.732 \: cm³} \: both \: the \:  values \: are \: correct \:  \:    \:  \\

 \\  \\

More formulae :

 \\

  •  \small \sf \: Volume  \: of \: a \: Cuboid  \large\leadsto  \small \boxed{ \bf l \times b \times h}

 \\

  •  \small \sf \: Volume  \: of \: a \: Cube \large\leadsto  \small \boxed{ \bf  {a}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Cylinder  \large\leadsto  \small \boxed{ \bf \pi  {r}^{2}h }

 \\

  •  \small \sf \: Volume  \: of \: a \:Cone\large\leadsto  \small \boxed{ \bf  \frac{1}{3}\pi r {}^{2} h }

 \\

  •  \small \sf \: Volume  \: of \: a \: Sphere \large\leadsto  \small \boxed{ \bf  \frac{4}{3} \pi r {}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Hemisphere \large\leadsto  \small \boxed{ \bf  \frac{2}{3}\pi  {r}^{3}  }

 \\

 \quad \quad \quad \mathfrak❀  \:  \mathfrak {\color{orange}{ iTzShInNy}}\:   ❀

 \\

Similar questions