Math, asked by dipo67, 1 year ago

Find the volume of height= 35, slant height= 37

Answers

Answered by arujaiswal12gmailcom
1
Firstly, u will find out the height by......... l² = h² + r² (Pythagoras theorem) ....so, h² = l² - r²...height = 12 cmAb Formula pe rakh do.... Volume of Cone = 1/3*22/7*r²h = 1/3*22/7*35²*12 = 15400 cm³

Mark as brainlist answer please

arujaiswal12gmailcom: mark as brainlist answer
Answered by abdul143
0
 <b> <i>
 \underline {\huge\bf{As \: we \: know \: this }} \\ \underline{ \huge\bf{is \: a \: cone}} \: = > > \\ \frak{height \: and \: slant \: height \: given \: \: are } > > \\ \frak{h = 35 \: and \: slant \: height \: = 37} \\ \mathcal{WE \: HAVE \: TO \: FIND \: THE} \\ \mathcal{ VOLUME \: SO,WE \: NEEDED \: THE } \\ \mathcal{ RADIUS} > > \\ \frak{the \: formula \: of \: slant\: height \: } \\ \frak{by \: this \: we \: will \: obtain \: \: R } \\ \frak{ > > \:l = \sqrt{ {h ^{2} + r}^{2} } } \\ > > \frak{ l = \sqrt{ {h}^{2} + {r}^{2} } } \\ > > \frak{in \: simple \: we \: can \: write \: it \: as > > } \\ > > \frak{ {l}^{2} = {h}^{2} + {r}^{2} } \\ > > \frak{ {37}^{2} = {35}^{2} - {r}^{2} } \\ \frak{ {r}^{2} = {37}^{2} - {35}^{2} = 1,369 - 1,225 = 144 } \\ \frak{r = 12} \\ > > \underline{ \mathcal{NOW \: WE \: WILL \: FIND }} \\ \frak{ The \: Volume} > > \\ > > \mathcal{ VOLUME \: OF \: THE \: CONE } > > \\ > > \huge \bf{ \frac{1}{3} \pi \: {r}^{2} h} \\ > > \frak{\pi = \frac{22}{7} } \\ > > \frak{ \frac{1}{3 } \times \frac{22}{7} \times ( {12} \times 12) \times 35} \\ > > \frak{ \frac{22}{7} \times12 \times 4\times 35 = 5,280 {cm}^{3}} \: \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \blue {\boxed{\frak{solved}}}
Similar questions