Math, asked by kanhaiyaa2004, 11 months ago

Find the volume of iron required to make an open box whose external
dimensions are 36 cm x 25 cm x 16.5 cm, the box being 1.5 cm thick
throughout. If 1 cm of iron weighs 8.5 grams, find the weight of the empty
box in kilograms.​

Answers

Answered by Sauron
89

Answer:

The weight of the empty box is 33.66 kg.

Step-by-step explanation:

\textbf{\underline{\underline{Given : }}}

\sf{External\:Dimensions = 36\:cm \times 25\:cm \times 16.5\:cm}

\textsf{Thickness of the box = 1.5 cm }

\sf{1 cm^{3}= 8.5\:grams}

\textbf{\underline{\underline{To find :}}}

\textsf{Weight of the empty box}

\textbf{\underline{\underline{Solution :}}}

\textsf{Let the volume of external cuboid be} \sf{V_1} \textsf{and of internal cuboid be}\sf{V_2}

\rule{300}{1.5}

\textsf{\underline{\underline{Volume of the cuboid - }}}

  • \textsf{Height = 16.5 cm}
  • \textsf{Length = 36 cm}
  • \textsf{Breadth = 25 cm}

\boxed{\mathsf{Volume \: of \: Cuboid = Length \times Breadth \times Height}}

\sf{\longrightarrow} \: 36 \times 25 \times 16.5 \\  \\ \sf{\longrightarrow} \: 14850 \:  {cm}^{3}  \: ......... \: \gray{(V_1)}

\rule{300}{1.5}

\textsf{\underline{\underline{Volume of the internal cuboid -}}}

\textsf{The thickness of the iron is 1.5 cm.}

\sf{\longrightarrow} \: Length \:  = 36 - (1.5 + 1.5) = 36 - 3 = 33  \: cm \\  \\  \sf{\longrightarrow} \: Breadth = 25 - (1.5 + 1.5) = 25 - 3 = 22 \: cm \\  \\  \sf{\longrightarrow} \:  Height  = 16.5 - 1.5 = 15 \: cm

\textsf{Length = 33 cm}

\textsf{Breadth = 22 cm }

\textsf{Height = 15 cm}

The 1.5 cm would be subtracted only once from the height as the box is open.

\boxed{\mathsf{Volume \: of \: Cuboid = Length \times Breadth \times Height}}

\sf{\longrightarrow} \: 33 \times 22 \times 15 \\  \\ \sf{\longrightarrow} \: 10890 \:  {cm}^{3} ........ \: \gray{(V_2)}

\rule{300}{1.5}

\textsf{\underline{\underline{Volume of the iron used -}}}

\boxed{\sf{Volume \: of \:  iron \:  used = V_1 - V_2}}

\sf{\longrightarrow} \: 14850 \:  {cm}^{3}  - 10890 \:  {cm}^{3} \\  \\ \sf{\longrightarrow} \: 3690 \:  {cm}^{3}

\textsf{Volume of the iron used = 3690 cm}³.

\rule{300}{1.5}

\textsf{\underline{\underline{Weight of the box -}}}

Multiply the volume of the iron with weight of each 1cm³.

\boxed{\sf{1cm^{3} = 8.5\:grams}}

\sf{\longrightarrow} \: 3690 \times 8.5 \\  \\ \sf{\longrightarrow} \: 33660 \: grams

Convert grams into kilograms -

\boxed{\sf{1kg= 1000\:grams}}

\sf{\longrightarrow} \:  \dfrac{33660}{1000}  \\  \\ \sf{\longrightarrow} \: 33.66 \: kg

Weight of the box = 33.66 kg.

\therefore The weight of the empty box is 33.66 kg.

Answered by BendingReality
54

Answer:

Volume = 3960 cm³

Weight = 33.66 kg

Step-by-step explanation:

Volume of iron required = External volume - Internal volume

= > ( 36 × 25 × 16.5 ) - ( 33 - 22 × 15 )    [ Subtracted thick from external volume ]

= > 14850 - 10890

=  > 3960 cm³

Now :

1 cm³ of iron weight = 8.5 g

3960 cm³ f iron weight = 8.5 g × 3960

= >  33660 g

= > 33.66 kg

Therefore , Volume of iron required is 3960 cm³ and weight of iron is 33.66 kg.

Similar questions