Math, asked by ranjanasharma0136, 4 months ago

Find the volume of the cuboid whose length =16cm, breadth = 9cm and height = 6c​

Answers

Answered by Anonymous
4

Volume of a cuboid = (length × breadth × height) cubic units.

= (l × b × h) cubic units.

(Since area = ℓ × b)

Volume of a cuboid = area of one surface × height cubic units

Let us look at the given cuboid.

The length of the cuboid = 5 cm

The breadth of the cuboid = 3 cm

The height of cuboid (thickness) = 2 cm

The number of 1 cm cubes in the given cuboid = 30 cubes = 5 × 3 × 2

We find that volume of the given cuboid with length 5 cm, breadth 3 cm and height 2 cm is 30 cu cm.

Therefore, volume of a cuboid = length × breadth × height

it's_Khu°°°☺️

Answered by Anonymous
26

Given :

  • Length =16cm

  • Breadth =9cm

  • Height = 6cm

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \\ \rule{200pt}{3pt} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

To Find :

  • Area of Cuboid = ?

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \\ \rule{200pt}{3pt} \end{gathered}\end{gathered} \end{gathered}\end{gathered}</p><p>

Solution

✭ {\underline{\pmb{\frak{ Formula \; Used \; :- }}}}

{\underline{\boxed{\pink{ \pmb{\sf{ Volume\small_{(Area)} =Length×Breadth×Height}}}}}}

Where :

  • L = Length = 16cm

  • B = Breadth = 09cm

  • H = Height = 06cm

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \\ \qquad{\underline{\rule{150pt}{1pt}}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

✭ {\underline{\pmb{\frak{ Calculating \; the \; Area\; :- }}}}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \begin{gathered} \dashrightarrow \; \; \sf {Volume\small_{(Area)} = Length×Breadth×Height  } \\ \end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \begin{gathered} \dashrightarrow \; \; \sf {Volume\small_{(Area)} = 16 \times 09 \times 06 } \\ \end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \begin{gathered} \dashrightarrow \; \; \sf {Volume\small_{(Area)} = 16 \times 09\times 06 = 864 } \\ \end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \begin{gathered} \dashrightarrow \; \; \sf {Volume\small_{(Area)} = 864 } \\ \end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \begin{gathered} {\qquad \; \; {\therefore \; {\underline{\boxed{\orange{\pmb{\frak{ Volume\small_{(Area)}= ₹ \; 864}}}}}}}} \\ \end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \\ \qquad{\underline{\rule{150pt}{1pt}}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

~Therefore

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \begin{gathered} {\qquad \; \; {\therefore \; {\underline{\boxed{ \color{aqua}{\pmb{\frak{ Volume\small_{(Area)}= ₹ \; 864}}}}}}}} \\ \end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \\ {\underline{\rule{212pt}{6pt}}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions