Math, asked by PragyaTbia, 1 year ago

Find the volume of the parallelopiped, if the coterminous edges are given by the vectors 2\hat{i} +5\hat{j} -4\hat{k} , 5\hat{i} +7\hat{j} +5\hat{k} , 4\hat{i} + 5\hat{j} - 2\hat{k}

Answers

Answered by hukam0685
1

Answer:

volume of parallelopiped = 84 cube-unit

Step-by-step explanation:

To find the volume of parallelopiped ,with coterminous edges are given by the vectors,we must calculate Scalar Triplet of the given vectors

Volume of parallelopiped = [\vec{a}\:\:\:\vec{b}\:\:\:\vec{c}]

if\vec{a}=2\hat{i} +5\hat{j} -4\hat{k}\\\\\vec{b}=5\hat{i} +7\hat{j} +5\hat{k}\\\\\vec{c}=4\hat{i} + 5\hat{j} - 2\hat{k}

[\vec{a}\:\:\:\vec{b}\:\:\:\vec{c}]

=\left|\begin{array}{ccc}2&5&-4\\5&7&5\\4&5&-2\end{array}\right|\\ \\\\=|2(-14-25)-5(-10-20)-4(25-28)|\\\\\\=|-78+150+12|\\\\\\84 unit^{3}


Similar questions