Math, asked by gurjeet83, 1 year ago

find the volume of the total surface area and the lateral surface area of a rectangular solid having l=8.5m ,b=6.4m,h=50cm​

Answers

Answered by Anonymous
10

\mathfrak{\large{\underline{\underline{Answer :-}}}}

Volume of the rectangular solid = 27.2 m³

Total Surface Area of the rectangular solid = 61.85 m²

Lateral Surface Area of the rectangular solid = 14.9 m²

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Length of the rectangular solid = 8.4 m

Breadth of the rectangular solid = 6.4 m

Height of the rectangular solid = 50 cm

Here all measurements are not in same Unit System

So, Convert measurement of height from CGS system to SI unit system.

We know that,

\boxed{\sf{1cm = \frac{1}{100} m}}

So,\:Multiply\:measurement\:of\:Height\:with\: \frac{1}{100}

\tt{\implies{Height = 50 \times \frac{1}{100}}}

\tt{\implies{Height = 0.5 m}}

\boxed{\sf{Volume\:of\:the\:cuboid=Length \times Breadth \times Height}}

= 8.5 \times 6.4 \times 0.5 \\ \\ = 27.2\:m^3

So, Volume of the rectangular solid = 27.2 m³

____________________________________

\boxed{\sf{Total\:Surface\:Area\:of\:the\:cuboid=2(lb+bh+lh)}}

= 2(8.5(6.4)+6.4(0.5)+8.5(0.5)) \\ \\ = 2(54.4+3.2+4.25) \\ \\ =61.85\:m^2

So, Total Surface Area of the rectangular solid = 61.85 m²

________________________________________

\boxed{\sf{Lateral\:Surface\:Area\:of\:the\:cuboid=2h(l+b)}}

= 2 \times 0.5(8.5+6.4) \\ \\ = 1(14.9) \\ \\ =14.9\:m^2

So, Lateral Surface Area of the rectangular solid = 14.9 m²

_________________________________________

Answered by deeprijhwani245
3

Answer: Volume= 27.2 cm3

Total Surface Area= 123.7 me

Lateral Surface Area= 14.9 m2

Attachments:
Similar questions