find the wavelength and frequency of a 100-MeV photon
Answers
To find:
Wavelength and frequency of 100 MeV photon?
Calculation:
Let frequency be f and wavelength of :
Explanation:
To find:
Wavelength and frequency of 100 MeV photon?
Calculation:
Let frequency be f and wavelength of \lambdaλ :
\sf \therefore \: hf = energy∴hf=energy
\sf \implies \: 6.63 \times {10}^{ - 34} \times f = 100 \times {10}^{6} \times( 1.6 \times {10}^{ - 19} )⟹6.63×10
−34
×f=100×10
6
×(1.6×10
−19
)
\sf \implies \: 6.63 \times {10}^{ - 34} \times f = {10}^{8} \times( 1.6 \times {10}^{ - 19} )⟹6.63×10
−34
×f=10
8
×(1.6×10
−19
)
\sf \implies \: 6.63 \times {10}^{ - 34} \times f = 1.6 \times {10}^{ - 11} ⟹6.63×10
−34
×f=1.6×10
−11
\sf \implies \: f = \dfrac{1.6}{6.63} \times {10}^{ - 11 + 34} ⟹f=
6.63
1.6
×10
−11+34
\sf \implies \: f = 0.24\times {10}^{ 23} ⟹f=0.24×10
23
\boxed{ \sf \implies \: f = 24\times {10}^{ 21} \: hz}
⟹f=24×10
21
hz
\sf \implies \: \lambda= \dfrac{3 \times {10}^{8} }{24\times {10}^{ 21}} ⟹λ=
24×10
21
3×10
8
\sf \implies \: \lambda= \dfrac{ {10}^{8} }{8\times {10}^{ 21}} ⟹λ=
8×10
21
10
8
\boxed{ \sf \implies \: \lambda= 0.125 \times {10}^{ - 13} \: m}
⟹λ=0.125×10
−13
m