Math, asked by karshikakur, 1 year ago

Find the zero of the polynomial p[x]=4x^2+24x+36

Answers

Answered by sureshbhat47
1
divide  the  p(x)  by  4,  we  get   ( x + 3) 2 = 0

hence  the  zero is  x =  - 3
Answered by silentlover45
5

\underline\mathfrak{Given:-}

  • 4x² + 24x + 36

\underline\mathfrak{To \: \: Find:-}

  • Find the zeroes are polynomial ......?

\underline\mathfrak{Solutions:-}

\: \: \: \: \: P \: {(x)} \: \: = \: \: {4x}^{2} \: + \: {24x} \: + \: {36}

\: \: \: \: \: \leadsto \: \: {4x}^{2} \: + \: {24x} \: + \: {36} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {4} \: {({x}^{2} \: + \: {6x} \: + \: {8})} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: + \: {6x} \: + \: {8} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: + \: {3x} \: + \: {3x} \: + \: {9} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {x} \: {({x} \: + \: {3})} \: + \: {x} \: {({x} \: + \: {3})} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {({x} \: + \: {3})} \: \: \: {({x} \: + \: {3})}

\: \: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {-3} \: \: \: and \: \: \: {x} \: \: = \: \: {-3}

  • \: \: \: \: \: \: \: \: \: {\alpha} \: \: = \: \: {-3} \: \: \: and \: \: \: {\beta} \: \: = \: \: {-3}

\underline\mathfrak{Verification:-}

4x² + 24x + 36

  • a = 4
  • b = 24
  • c = 36

\: \: \: \: \: \therefore {Sum \: \: of \: \: zeroes} \: \: = \: \: \frac{ \: - \: coefficient \: \: of \: \: x}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: {\alpha} \: + \: {\beta}  \: \: = \: \: \frac{-b}{a}

\: \: \: \: \: \leadsto \: \: {-3} \: + \: {(-3)}  \: \: = \: \: - \: \frac{24}{4}

\: \: \: \: \: \leadsto \: \: {-3} \: - \: {3} \: \: = \: \: \cancel{\frac{-24}{4}}

\: \: \: \: \: \leadsto \: \: {-6}  \: \: = \: \: {-6}

\: \: \: \: \: \therefore {Product \: \: of \: \: zeroes} \: \: = \: \: \frac{constant \: \: term}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: {\alpha} \: {\beta}  \: \: = \: \: \frac{c}{a}

\: \: \: \: \: \leadsto \: \: {-3} \: \times \: {(-3)}  \: \: = \: \: \cancel{\frac{36}{4}}

\: \: \: \: \: \leadsto \: \: {9} \: \: = \: \: {9}

Verified.

Similar questions