Math, asked by XxCharmingGuyxX, 4 months ago

find the zero.
 \sqrt{3  \: {x}^{2} }  - 8x + 4 \sqrt{3 = 0}

Answers

Answered by indreshsahu1978
1

Answer:

thank you I think that's correct answer

Attachments:
Answered by ITZBFF
76

 \mathrm \red{ \sqrt{3}  {x}^{2} - 8x + 4 \sqrt{3} = 0  }

 \\  \\  \mathsf{x =  \:  \frac{ - ( - 8)  \: \pm \:  \sqrt{ {( - 8)}^{2}  - 4( \sqrt{3}).(4 \sqrt{3} ) } }{2. \sqrt{3} } } \\  \\  \mathsf{x =  \frac{8 \:  \pm \:  \sqrt{64 -  {(4 \sqrt{3}) }^{2} } }{2. \sqrt{3} }} \\  \\  \mathsf{x =  \frac{8 \:  \pm \:  \sqrt{64 - 48} }{2 \sqrt{3} } }  \\  \\  \mathsf{x =  \frac{8 \:  \pm \:  \sqrt{16} }{2 \sqrt{3} }  }  \\  \\  \mathsf{x =  \frac{8 \:  \pm \: 4}{2 \sqrt{3} }  } \\  \\  \mathsf{x =  \frac{8  + 4}{2 \sqrt{3} } \: ;  \: x =  \frac{8 - 4}{2 \sqrt{3} } } \\  \\  \mathsf{x =  \frac{12}{2 \sqrt{3} }  \: ; \: x =  \frac{4}{2 \sqrt{3} }} \\  \\   \mathsf{x =  \frac{6}{ \sqrt{3} }  \:; \: x =  \frac{2}{ \sqrt{3} }   } \\  \\  \mathsf{x =  \frac{6}{ \sqrt{3} } \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \:  \: ; \:  \: x =  \frac{2}{ \sqrt{ 3}}   } \\  \\   \mathsf{x =  \frac{6 \sqrt{3} }{3} \:  ; \: x =  \frac{2  }{ \sqrt{3} } } \\  \\  \boxed{ \mathsf {x = 2 \sqrt{3}  \: ; \:  \frac{2}{ \sqrt{3} } }} \\  \\  \boxed {\boxed{ \mathsf \red{Formula  \: used  \: here : } \: } \: } \:  \:  \:  \\  \\  \mathsf{x =  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a} }

Similar questions